[PDF] Models of the Atom, Project Physics Text and Handbook Volume 5





Loading...








Atomic Model Project - Eagle Mountain-Saginaw Independent

Atomic Model Project 1st six weeks PROJECT 5 – ATOMIC MODELS BACKGROUND: We have learned about atomic structure, what atoms are made of and how they look Now it is time to build a model of an atom ASSIGNMENT You will be assigned an element You will build a 3-D representation of one atom of that element, no “flat” models will be allowed




PowerPoint - Models of the Atom - A Historical Perspective

atom This is an individual project - each student will build their own atom model outside of class using scrap material available at home Materials must be non-perishable (if it is edible, DO NOT use it) and APPROPRIATE for classroom display Project Deadline: Monday, October 27, 2014 Scoring Rubric: Your project will be scored as follows:

PowerPoint - Models of the Atom - A Historical Perspective

HISTORY OF THE ATOM 1856 -1940 Joseph John Thompson In 1904, Thompson develops the idea that an atom was made up of electrons scattered unevenly within an elastic sphere surrounded by a soup of positive charge to balance the electron's charge It is called the plums pudding model He was awarded a Nobel Prize in 1906 for discovering the Electron

The Atom for Middle School - Miss Little's Classroom Website

atom: the smallest particle of an element that has all the properties of that element The atom has nocharge The 3 main subatomic particles that make up the atom are the proton, neutron and electron nucleus: small, dense positively charged center of an atom protons and neutrons are found in the nucleus

Computational Chemistry in the High School Classroom

As technology continues to improve, it is the hope of this project group that stu-dents can now benefit from such programs as well Research was done to determine con-tent areas high school chemistry students typically struggle with that fall under the State of Massachusetts chemistry educational standards A teaching module consisting of a se-




Searches related to high school atom project filetype:pdf

A project the children enjoy is making marshmallow molecules This activity will help your students understand the difference between an atom and a molecule Tell the children that each marshmallow represents an atom Toothpicks are used to join the atoms When atoms are joined they will form a molecule To begin, each child should receive

[PDF] History of the Atom Project

The atomic theory of matter is an excellent illustration of the process of science You must hand in a bibliography with your project teach high school

[PDF] Models of the Atom, Project Physics Text and Handbook Volume 5

Directors of Harvard Project Physics F James Rutherford, Capuchino High School, Dalton's atomic theory and the laws of chemical combination 11

[PDF] Atomic History Project Background: If you were asked to draw the

This project is modified from Susan Schmidt's “A Webquest for High School Chemistry ” history, scientists have accepted five major different atomic models

[PDF] Chemistry Independent Project - Chicago Public Schools

grade band High School Chemistry Project: Which model of the atom is best supported by evidence? Estimated Time ~225 minutes Grade Level Standard(s )

[PDF] EXHIBITING NUCLEAR PROJECT - OSTIGOV

but occasionally they have a division for junior high school entrants High School, Staten Island, New York, If you are interested in a project related to atomic

PDF document for free
  1. PDF document for free
[PDF] Models of the Atom, Project Physics Text and Handbook Volume 5 130357_7modelsofatomproj00fjam.pdf

TheProjectPhysicsCourseTextandHandbook

ModelsoftheAtom

/•.••

TheProjectPhysicsCourse

TextandHandbook

UNIT5

ModelsoftheAtom

AComponentofthe

ProjectPhysicsCourse

Publishedby

HOLT,RINEHARTandWINSTON,Inc.NewYork,Toronto

DirectorsofHarvardProjectPhysics

GeraldHolton,DepartmentofPhysics,Harvard

University

F.JamesRutherford,CapuchinoHighSchool,

SanBruno,Cahfornia,andHarvardUniversity

FletcherG.Watson,HarvardGraduateSchool

ofEducation

Acknowledgments,TextSection

Theauthorsandpublisherhavemadeeveryeffort

totracetheownershipofallselectionsfoundinthis bookandtomakefullacknowledgmentfortheiruse.

Manyoftheselectionsareinthepublicdomain.

Gratefulacknowledgmentisherebymadetothe

followingauthors,pubUshers,agents,andindivid- ualsforuseoftheircopyrightedmaterial.

SpecialConsultanttoProjectPhysics

AndrewAhlgren,HarvardGraduateSchoolof

Education

ApartialUstofstaffandconsultantstoHarvard

ProjectPhysicsappearsonpageiv.

ThisText-Handbook,Unit5isoneofthemanyin-

structionalmaterialsdevelopedfortheProject

PhysicsCourse.ThesematerialsincludeTexts,

Handbooks,TeacherResourceBooks,Readers,

ProgrammedInstructionbooklets,FilmLoops,

Transparencies,16mmfilms,andlaboratory

equipment.

Copyright©1970ProjectPhysics

AllRightsReservedSBN03-084501-7

123403998765432

ProjectPhysicsisaregisteredtrademark

P.3ExcerptsfromTheWayThingsAre:TheDe

RerumNaturaofTitusLucretiusCaius,atransla-

tionbyRolfeHumphries,copyright©1969by

IndianaUniversityPress.

P.5From'TheFirstChapterofAristotle's

'FoundationsofScientij&cThought'(Metaphysica,

LiberA),"translatedbyDanielE.Gershensonand

DanielA.Greenburg,inTheNaturalPhilosopher,

Vol.II,copyright©1963bytheBlaisdellPub-

lishingCompany,pp.14 - 15.

P.7FromTheLifeoftheHonorableHenry

Cavendish,byGeorgeWilson,printedforthe

CavendishSociety,1851,pp.186-187.

Pp.7-8From"ElementsofChemistry"byAntoine

LaurentLavoisier,translatedbyRobertKerrinGreat

BooksoftheWesternWorld,Vol.45,copyright1952

byEncyclopaediaBritannica,Inc.,pp.3-4.

P.11From"TheAtomicMolecularTheory"by

LeonardK.NashinHarvardCaseHistoriesin

ExperimentalScience,Case4,Vol.1,copyright1950

byHarvardUniversity,p.228.

P.21FromThePrinciplesofChemistrybyDmitri

Mendeleev,translatedbyGeorgeKamensky,copy-

right1905byLongmans,GreenandCompany,

London,p.27.

P.22Mendeleev,Dmitri,1872.

P.29From"ExperimentalResearchesinElec-

tricity"byMichaelFaradayfromGreatBooksofthe

WesternWorld,Vol.45,copyright1952by

EncyclopaediaBritannica,Inc.,pp.389-390.

Pp.43-44Einstein,Albert,trans,byProfessor

IrvingKaplan,MassachusettsInstituteofTech-

nology.

P.48Roentgen,W.K.

P.57From"Opticks"byIsaacNewtonfromGreat

BooksoftheWesternWorld,Vol.34,copyright1952

byEncyclopaediaBritannica,Inc.,pp.525-531.

P.67FromBackgroundtoModeimScience,

Needham,JosephandPagel,Walter,eds.,copyright

1938byTheMacmillanCompany,pp.68-69.

P.88LetterfromRutherfordtoBohr,March1913.

P.91From"Opticks"byIsaacNewtonfromGreat

BooksoftheWesternWorld,Vol.34,copyright1952

byEncyclopaediaBritannica,Inc.,p.541.

P.113FromAtom,icPhysicsbyMaxBom,copy-

right1952byBlackie&Son,Ltd.,p.95. p.114LetterfromAlbertEinsteintoMaxBom, 1926.

P.119FromAPhilosophicalEssayonPossibilities

byPierreSimonLaplace,translatedbyFrederickW.

TruscottandFrederickL.Emory,copyright1951

byDoverPublications,Inc.,p.4.

PictureCredits,TextSection

Coverphoto:CourtesyofProfessorErwinW.

Mueller,ThePennsylvaniaStateUniversity.

P.1(top)MerckSharp&DohmeResearch

Laboratories;(center)LoomisDean,LIFE

MAGAZINE,©TimeInc.

P.2(charioteer)HirmerFotoarchiv,Munich;

(architecturalruins)GreekNationalTourist

Office,N.Y.C.

P.4Electrumpendant(enlarged).Archaic.

Greek.Gold.Courtesy,MuseumofFineArts,

Boston.HenryLilliePierceResiduaryFund.

P.7FisherScientificCompany,Medford,Mass.

P.10fromDalton,John,ANewSystemof

ChemicalPhilosophy,R.BickerstafF,London,

1808-1827,asreproducedinAHistoryof

ChemistrybyCharles-AlbertReichen,c1963,

HawthornBooksInc.,70FifthAve.,N.Y.C.

P.13EngravedportraitbyWorthingtonfroma

paintingbyAllen.TheScienceMuseum,London.

P.15(drawing)Reprintedbypermissionfrom

CHEMICALSYSTEMSbyChemicalBondApproach

Project.Copyright1964byEarlhamCollegePress,

Inc.PublishedbyWebsterDivision,McGraw-Hill

BookCompany.

P.20MoscowTechnologicalInstitute.

P.26(portrait)TheRoyalSocietyofLondon.

P.27CourtesyofAluminumCompanyofAmerica.

P.32ScienceMuseum,London.LentbyJ.J.

Thomson,M.A.,TrinityCollege,Cambridge.

P.35CourtesyofSirGeorgeThomson.

P.39(top)CaliforniaInstituteofTechnology.

P.45(left,top)CourtesyofTheNewYorkTimes;

(left,middle)AmericanInstituteofPhysics; (middle,right)CourtesyofCaliforniaInstituteof

TechnologyArchives;(left,bottom)Courtesyof

EuropaVerlag,Zurich.

P.47(left,top)Dr.MaxF.Millikan;(right,top)

HarperLibrary,UniversityofChicago;(right

margin)R.Diihrkoopphoto.

P.48TheSmithsonianInstitution.

P.49BurndyLibrary,Norwalk,Conn.

P.51EastmanKodakCompany,Rochester,N.Y.

P.52HighVoltageEngineeringCorp.

P.53(rose)EastmanKodakCompany;(fish)

AmericanInstituteofRadiology;(reactorvessel)

NuclearDivision,CombustionEngineering,Inc.

P.58ScienceMuseum,London.LentbySir

LawrenceBragg,F.R.S.

P.64CourtesyofDr.OwenJ.Gingerich,

SmithsonianAstrophysicalObservatory.

P.67CourtesyofProfessorLawrenceBadash,

Dept.ofHistory,UniversityofCalifornia,

SantaBarbara.

P.76(top)AmericanInstituteofPhysics;

(bottom,right)CourtesyofNielsBohrLibrary,

AmericanInstituteofPhysics.

P.80(ceremony)CourtesyofProfessorEdward

M.Purcell,HarvardUniversity;(medal)Swedish

InformationService,N.Y.C.

P.93ScienceMuseum,London.LentbySir

LawrenceBragg,F.R.S.

P.94fromtheP.S.S.C.filmMatterWaves.

P.100AmericanInstituteofPhysics.

P.102ProfessorHarryMeiners,Rensselaer

PolytechnicInstitute.

P.106AmericanInstituteofPhysics.

P.107(deBroglie)AcademicdesSciences,Paris;

(Heisenberg)ProfessorWernerK.Heisenberg; (Schrodinger)Ameriq^nInstituteofPhysics.

P.109(top,left)Perkin-ElmerCorp.

P.112Orear,Jay,FundamentalPhysics,©1961

byJohnWiley&Sons,Inc.,NewYork.

P.115TheGraphicWorkofM.C.Escher,

HawthornBooksInc.,N.Y."LuchtenWater2."

PictureCredits,HandbookSection

Cover:DrawingbySaulSteinberg,from

TheSketchbookfor1967,HallmarkCards,Inc.

P.130Thesetablesappearonpp.122,157and

158ofTypesofGraphicRepresentationofthe

PeriodicSystemofChemicalElementsby

EdmundG.Mazurs,publishedin1957bythe

author.Theyalsoappearonp.8ofChemistry magazine,July1966.

P.136CourtesyL.J.Lippie,DowChemical

Company,Midland.Michigan.

P.149FromthecoverofTheScienceTeacher,

Vol.31,No.8,December1964,illustrationfor

thearticle,"ScientistsonStamps;Reflectionsof

Scientists'PublicImage,"byVictorShowalter,

TheScienceTeacher,December1964,pp.40 - 42.

Allphotographsusedwithfilmloopscourtesy

ofNationalFilmBoardofCanada.

Photographsoflaboratoryequipmentandof

studentsusinglaboratoryequipmentweresupplied withthecooperationoftheProjectPhysicsstaff andDamonCorporation.

PartialListofStaffandConsultants

Theindividualslistedbelow(andonthefollowingpages)haveeachcontributedinsomewaytothe developmentofthecoursematerials.Theirperiodsofparticipationrangedfrombriefconsultationsto full-timeinvolvementintheteamforseveralyears.Theaffiliationsindicatedarethosejustpriorto orduringtheperiodofparticipation.

AdvisoryCommittee

E.G.Begle,StanfordUniversity,Calif.

PaulF.Brandwein,Harcourt,Brace&World,

Inc.,SanFrancisco,Calif.

RobertBrode,UniversityofCalifornia,Berkeley

ErwinHiebert,UniversityofWisconsin,Madison

HarryKelly,NorthCarolinaStateCollege,Raleigh

WilliamC.Kelly,NationalResearchCouncil,

Washington,D.C.

PhilippeLeCorbeiller,NewSchoolforSocial

Research,NewYork,N.Y.

ThomasMiner,GardenCityHighSchool,New

York.

PhilipMorrison,MassachusettsInstituteof

Technology,Cambridge

ErnestNagel,ColumbiaUniversity,NewYork,

N.Y.

LeonardK.Nash,HarvardUniversity

I.I.Rabi,ColumbiaUniversity,NewYork.N.Y.

StaffandConsultants

L.K.Akers,OakRidgeAssociatedUniversities,

Tenn.

RogerA.Albrecht,OsageCommunitySchools,

Iowa

DavidAnderson,OberlinCollege,Ohio

GaryAnderson,HarvardUniversity

DonaldArmstrong,AmericanScienceFilm

Association,Washington,D.C.

ArnoldArons,UniversityofWashington

SamAscher,HenryFordHighSchool,Detroit,

Mich.

RalphAtherton,TalawandaHighSchool,Oxford,

Ohio

AlbertV.Baez,UNESCO,Paris

WilliamG.Banick,FultonHighSchool.Atlanta,

Ga.

ArthurBardige,NovaHighSchool,Fort

Lauderdale,Fla.

RollandB.Bartholomew,HenryM.GunnHigh

School,PaloAlto,Calif.

O.TheodorBenfey,EarlhamCollege,Richmond,

Ind.

RichardBerendzen,HarvardCollegeObservatory

AlfredM.Bork,ReedCollege,Portland,Ore.

F.DavidBoulanger,MercerIslandHighSchool,

Washington

AlfredBrenner,HarvardUniversity

RobertBridgham,HarvardUniversity

RichardBrinckerhoff,PhillipsExeterAcademy,

Exeter.N.H.

DonaldBrittain,NationalFilmBoardofCanada.

Montreal

JoanBromberg,HarvardUniversity

VinsonBronson,NewtonSouthHighSchool,

NewtonCentre,Mass.

StephenG.Brush,LawrenceRadiationLaboratory,

UniversityofCalifornia.Livermore

MichaelButler.CIASAFilmsMundiales.S.A..

Mexico

LeonCallihan,St.Mark'sSchoolofTexas.Dallas

DouglasCampbell,HarvardUniversity

J.ArthurCampbell,HarveyMuddCollege,

Claremont,California

DeanR.Casperson.HarvardUniversity

BobbyChambers.OakRidgeAssociated

Universities.Tenn.

RobertChesley.ThacherSchool,Ojai,Calif.

JohnChristensen.OakRidgeAssociated

Universities,Tenn.

DavidClarke.BrowneandNicholsSchool.

Cambridge.Mass.

RobertS.Cohen.BostonUniversity.Mass.

BrotherColumbanFrancis.F.S.C..MaterChristi

DiocesanHighSchool.LongIslandCity.N.Y.

ArthurCompton.PhillipsExeterAcademy,

Exeter.N.H.

DavidL.Cone,LosAltosHighSchool,CaUf.

WilliamCooley.UniversityofPittsburgh.Pa.

AnnCouch.HarvardUniversity

PaulCowan,Hardin-SimmonsUniversity.

Abilene,Tex.

CharlesDavis.FairfaxCountySchoolBoard.

Fairfax.Va.

MichaelDentamaro.SennHighSchool.Chicago,

111.

RaymondDittman.NewtonHighSchool.Mass.

ElsaDorfman.EducationalServicesInc..

Watertown.Mass.

VadimDrozin.BucknellUniversity.Lewisburg,

Pa.

NeilF.Dunn.BurlingtonHighSchool.Mass.

R.T.Ellickson.UniversityofOregon.Eugene

ThomasEmbry.NovaHighSchool.Fort

Lauderdale.Fla.

WalterEppenstein.RensselaerPolytechnic

Institute,Troy,N.Y.

HermanEpstein.BrandeisUniversity.Waltham.

Mass.

ThomasF.B.Ferguson.NationalFilmBoardof

Canada.Montreal

ThomasvonFoerster.HarvardUniversity

(continuedonp.122) Scienceisanadventureofthewholehumanracetolearntoliveinand perhapstolovetheuniverseinwhichtheyare.Tobeapartofitisto understand,tounderstandoneself,tobegintofeelthatthereisacapacity withinmanfarbeyondwhathefelthehad,ofaninfiniteextensionof humanpossibilities... Iproposethatsciencebetaughtatwhateverlevel,fromthelowesttothe highest,inthehumanisticway.Itshouldbetaughtwithacertainhistorical understanding,withacertainphilosophicalunderstanding,withasocial understandingandahumanunderstandinginthesenseofthebiography,the natureofthepeoplewhomadethisconstruction,thetriumphs,thetrials,the tribulations.

I.I.RABI

NobelLaureateinPhysics

Preface

BackgroundTheProjectPhysicsCourseisbasedontheideasand researchofanationalcurriculumdevelopmentprojectthatworkedin threephases.First,theauthors - ahighschoolphysicsteacher,a universityphysicist,andaprofessorofscienceeducation - collaborated tolayoutthemaingoalsandtopicsofanewintroductoryphysics course.Theyworkedtogetherfrom1962to1964withfinancialsupport fromtheCarnegieCorporationofNewYork,andthefirstversionof thetextwastriedoutintwoschoolswithencouragingresults. ThesepreliminaryresultsledtothesecondphaseoftheProject whenaseriesofmajorgrantswereobtainedfromtheU.S.Officeof EducationandtheNationalScienceFoundation,startingin1964. Invaluableadditionalfinancialsupportwasalsoprovidedbythe FordFoundation,theAlfredP.SloanFoundation,theCarnegie Corporation,andHarvardUniversity.Alargenumberofcollaborators werebroughttogetherfromallpartsofthenation,andthegroup workedtogetherforoverfouryearsunderthetitleHarvardProject Physics.AttheProject'scenter,locatedatHarvardUniversity, Cambridge,Massachusetts,thestaffandconsultantsincludedcollege andhighschoolphysicsteachers,astronomers,chemists,historians andphilosophersofscience,scienceeducators,psychologists, evaluationspecialists,engineers,filmmakers,artistsandgraphic designers.Theteachersservingasfieldconsultantsandthestudents inthetrialclasseswerealsoofvitalimportancetothesuccessof HarvardProjectPhysics.Aseachsuccessiveexperimentalversionof thecoursewasdeveloped,itwastriedoutinschoolsthroughoutthe UnitedStatesandCanada.Theteachersandstudentsinthoseschools reportedtheircriticismsandsuggestionstothestaffinCambridge, andthesereportsbecamethebasisforthesubsequentrevisionsof thecoursematerials.InthePrefacetoUnit1Textyouwillfindalistofthe majoraimsofthecourse. Wewishitwerepossibletolistindetailthecontributionsofeach personwhoparticipatedinsomepartofHarvardProjectPhysics. Unhappilyitisnotfeasible,sincemoststaffmembersworkedona varietyofmaterialsandhadmultipleresponsibilities.Furthermore, everytextchapter,experiment,pieceofapparatus,filmorotheritem intheexperimentalprogrambenefittedfromthecontributionsofa greatmanypeople.Ontheprecedingpagesisapartiallistof contributorstoHarvardProjectPhysics.Therewere,infact,many othercontributorstoonumeroustomention.Theseincludeschool administratorsinparticipatingschools,directorsandstaffmembers oftraininginstitutesforteachers,teacherswhotriedthecourseafter theevaluationyear,andmostofallthethousandsofstudentswho notonlyagreedtotaketheexperimentalversionofthecourse,but whowerealsowillingtoappraiseitcriticallyandcontributetheir opinionsandsuggestions. TheProjectPhysicsCourseToday.Usingthelastoftheexperimental versionsofthecoursedevelopedbyHarvardProjectPhysicsin

1964-68asastartingpoint,andtakingintoaccounttheevaluation

resultsfromthetryouts,thethreeoriginalcollaboratorssetoutto developtheversionsuitableforlarge-scalepublication.Wetake particularpleasureinacknowledgingtheassistanceofDr.Andrew AhlgrenofHarvardUniversity.Dr.Ahlgrenwasinvaluablebecause ofhisskillasaphysicsteacher,hiseditorialtalent,hisversatility andenergy,andaboveall,hiscommitmenttothegoalsofHarvard

ProjectPhysics.

WewouldalsoespeciallyliketothankMissJoanLawswhose

administrativeskills,dependability,andthoughtfulnesscontributedso muchtoourwork.Thepublisher.Holt,RinehartandWinston,Inc. ofNewYork,providedthecoordination,editorialsupport,andgeneral backingnecessarytothelargeundertakingofpreparingthefinal versionofallcomponentsoftheProjectPhysicsCourse,including texts,laboratoryapparatus,films,etc.Damon,acompanylocatedin Needham,Massachusetts,workedcloselywithustoimprovethe engineeringdesignofthelaboratoryapparatusandtoseethatitwas properlyintegratedintotheprogram. Intheyearsahead,thelearningmaterialsoftheProjectPhysics Coursewillberevisedasoftenasisnecessarytoremoveremaining ambiguities,clarifyinstructions,andtocontinuetomakethematerials moreinterestingandrelevanttostudents.Wethereforeurgeall studentsandteacherswhousethiscoursetosendtous(incareof Holt,RinehartandWinston,Inc.,383MadisonAvenue,NewYork, NewYork10017)anycriticismorsuggestionstheymayhave.

F.JamesRutherford

GeraldHolton

FletcherG.Watson

ContentsTEXTSECTION,Unit5

Prologue1

Chapter17TheChemicalBasisofAtomicTheory

Dalton'satomictheoryandthelawsofchemicalcombination11

Theatomicmassesoftheelements14

Otherpropertiesoftheelements:combiningcapacity16

Thesearchfororderandregularityamongtheelements18

Mendeleev'speriodictableoftheelements19

Themodernperiodictable23

ElectricityandMatter:qualitativestudies25

Electricityandmatter:quantitativestudies28

Chapter18ElectronsandQuanta

Theideaofatomicstructure33

Cathoderays34

Themeasurementofthechargeoftheelectron:Millikan'sexperiment37

Thephotoelectriceffect40

Einstein'stheoryofthephotoelectriceffect43

Xrays48

Electrons,quantaandtheatom54

Chapter19TheRutherford-BohrModeloftheAtom

Spectraofgases59

Regularitiesinthehydrogenspectrum63

Rutherford'snuclearmodeloftheatom66

Nuclearchargeandsize69

TheBohrtheory:thepostulates71

Thesizeofthehydrogenatom72

OtherconsequencesoftheBohrmodel74

TheBohrtheory:thespectralseriesofhydrogen75

Stationarystatesofatoms:theFranck-Hertzexperiment79

Theperiodictableoftheelements82

TheinadequacyoftheBohrtheoryandthestateofatomictheoryintheearly1920's86

Chapter20SomeIdeasfromModernPhysicalTheories

Someresultsofrelativitytheory95

Particle-hkebehaviorofradiation99

Wave-likebehaviorofparticles101

Mathematicalvsvisuahzableatoms104

Theuncertaintyprinciple108

Probabihtyinterpretation111

Epilogue116

Contents - HandbookSection125

Index/TextSection159

Index/HandbookSection163

AnswerstoEnd-of-SectionQuestions165

BriefAnswerstoStudyGuideQuestions168

.*^*". UNIT5

ModelsoftheAtom

CHAPTERS

17TheChemicalBasisoftheAtomicTheory

18ElectronsandQuanta

19TheRutherford-BohrModeloftheAtom

20SomeIdeasfromModernPhysicalTheories

PROLOGUEIntheearlierunitsofthiscoursewestudiedthemotion ofbodies:bodiesofordinarysize,suchaswedealwithineverydaylife, andverylargebodies,suchasplanets.Wehaveseenhowthelawsof motionandgravitationweredevelopedovermanycenturiesandhow theyareused.Wehavelearnedaboutconservationlaws,aboutwaves, aboutlight,andaboutelectricandmagneticfields.Allthatwehave learnedsofarcanbeusedtostudyaproblemwhichhasintrigued peopleformanycenturies:theproblemofthenatureofmatter.The phrase,"thenatureofmatter,"mayseemsimpletousnow,butits meaninghasbeenchangingandgrowingoverthecenturies.Thekind ofquestionsandthemethodsusedtofindanswerstothesequestions arecontinuallychanging.Forexample,duringthenineteenthcentury thestudyofthenatureofmatterconsistedmainlyofchemistry:inthe twentiethcenturythestudyofmatterhasalsomovedintoatomicand nuclearphysics. Since1800progresshasbeensorapidthatitiseasytoforgetthat peoplehavetheorizedaboutmatterformorethan2,500years.Infact someofthequestionsforwhichanswershavebeenfoundonlyduring thelasthundredyearsbegantobeaskedmorethantwothousand yearsago.Someoftheideasweconsidernewandexciting,suchas theatomicconstitutionofmatter,weredebatedinGreeceinthefifth andfourthcenturiesB.C.Inthisprologueweshallthereforereview brieflythedevelopmentofideasconcerningthenatureofmatterupto about1800.ThisreviewwillsetthestageforthefourchaptersofUnit5, whichwillbedevoted,ingreaterdetail,totheprogressmadesince

1800onunderstandingtheconstitutionofmatter.Itwillbeshownin

thesechaptersthatmatterismadeupofdiscreteparticlesthatwecall atoms,andthattheatomsthemselveshavestructure. Opposite:Monolith - TheFaceofHalfDome(PhotobyAnselAdams)

Thephotographsonthesetwo

pagesillustratesomeofthevariety offormsofmatter:largeandsmall, stableandshifting. microscopiccrystals condensedwatervapor

GreekIdeasofOrder

TheGreekmindlovedclarityandorder,expressedin

awaythatstilltouchesusdeeply.Inphilosophy,litera- ture,artandarchitectureitsoughttointerpretthingsin termsofhumaneandlastingqualities.Ittriedtodiscover theformsandpatternsthoughttobeessentialtoan understandingofthings.TheGreeksdelightedinshow- ingtheseformsandpatternswhentheyfoundthem.Their artandarchitectureexpressbeautyandintelligibility bymeansofbalanceofformandsimpledignity.

TheseaspectsofGreekthoughtarebeautifullyex-

pressedintheshrineofDelphi.Thetheater,whichcould seat5,000spectators,impressesusbecauseofthesize anddepthofthetieredseatingstructure.Butevenmore strikingisthenaturalandorderlywayinwhichthetheater isshapedintothelandscapesothattheentirelandscape takesontheaspectofagianttheater.TheTreasurybuild- ingatDelphihasanorderlysystemofproportions,with formandfunctionintegratedintoalogical,pleasing whole.ThestatueofthecharioteerfoundatDelphi,with itsbalanceandfirmness,representsagenuineidealof malebeautyatthattime.Aftermorethan2,000yearswe arestillstruckbytheeleganceofGreekexpression. v^'K^ r^.^5><^>

Prologue3

TheRomanpoetLucretiusbasedhisideasofphysicsonthe

traditionofatomismdatingbacktotheGreekphilosophersDemocritus andLeucippus.ThefollowingpassagesarefromhispoemDeRerum Natura(OntheNatureofThings),aneloquentstatementofatomism: ...Ifyouthink

Atomscanstoptheircourse,refrainfrommovement,

Andbycessationcausenewkindsofmotion,

Youarefarastrayindeed.Sincethereisvoid

Throughwhichtheymove,allfundamentalmotes

Mustbeimpelled,eitherbytheirownweight

Orbysomeforceoutsidethem.Whentheystrike

Eachother,theybounceoff;nowonder,either.

Sincetheyareabsolutesolid,allcompact.

Withnothingbackofthemtoblocktheirpath.

...noatomeverrests

Comingthroughvoid,butalwaysdrives,isdriven

Invariousways,andtheircollisionscause.

Asthecasemaybe,greaterorlessrebound.

Whentheyareheldinthickestcombination,

Atcloserintervals,withthespacebetween

Morehinderedbytheirinterlockoffigure.

Thesegiveusrock,oradamant,oriron.

Thingsofthatnature.(Notverymanykinds

Gowanderinglittleandlonelythroughthevoid.)

Therearesomewhosealternatemeetings,partings,are

Atgreaterintervals;fromthesewearegiven

Thinair,theshiningsunlight...

*** ...It'snowonder

Thatwhiletheatomsareinconstantmotion,

Theirtotalseemstobeattotalrest,

Savehereandtheresomeindividualstir.

Theirnatureliesbeyondourrangeofsense.

Far,farbeyond.Sinceyoucan'tgettosee

Thethingsthemselves,they'reboundtohidetheirmoves,

Especiallysincethingswecansee,often

Concealtheirmovements,too,whenatadistance.

Takegrazingsheeponahill,youknowtheymove,

Thewoollycreatures,tocropthelovelygrass

Whereveritmaycalleachone,withdew

Stillsparklingitwithjewels,andthelambs.

Fedfull,playlittlegames,flashinthesunlight.

Yetallthis,faraway,isjustablue,

Awhitenessrestingonahillofgreen.

Orwhengreatarmiessweepacrossgreatplains

Inmimicwarfare,andtheirshininggoes

Uptothesky,andalltheworldaround

Isbrilliantwiththeirbronze,andtrampledearth

Tremblesunderthecadenceoftheirtread,

Whitemountainsechotheuproartothestars,

Thehorsemengallopandshaketheveryground,

Andyethighinthehillsthereisaplace

Fromwhichthewatcherseesahostatrest.

Andonlyabrightnessrestingontheplain.

[translatedfromtheLatinbyRolfeHumphries]

ModelsoftheAtom

Thisgoldearring,madeinGreece

about600B.C.,showsthegreatskill withwhichancientartisansworked metals.[MuseumofFineArts,Boston] Earlysciencehadtodevelopoutoftheideasavailablebefore sciencestarted - ideasthatcamefromexperiencewithsnow,wind, rain,mistandclouds;withheatandcold;withsaltandfreshwater; wine,milk,blood,andhoney;ripeandunripefruit;fertileandinfertile seeds.Themostobviousandmostpuzzlingfactswerethatplants, animals,andmenwereborn,thattheygrewandmatured,andthatthey agedanddied.Mennoticedthattheworldaboutthemwascontinually changingandyet,onthewhole,itseemedtoremainmuchthesame. Theunknowncausesofthesechangesandoftheapparentcontinuity ofnaturewereassignedtotheactionsofgodsanddemonswhowere thoughttocontrolnature.Mythsconcerningthecreationoftheworld andthechangesoftheseasonswereamongtheearliestcreative productionsofprimitivepeopleseverywhere,andhelpedthemtocome totermswitheventsmancouldseehappeningbutcouldnotrationally understand. Overalongperiodoftimemendevelopedsomecontrolovernature andmaterials:theylearnedhowtokeepwarmanddry,tosmeltores,to makeweaponsandtools,toproducegoldornaments,glass,perfumes, andmedicines.Eventually,inGreece,bytheyear600B.C.,philosophers - literally"loversofwisdom" - hadstartedtolookforrationalexplana- tionsofnaturalevents,thatis,explanationsthatdidnotdependonthe actionsorthewhimsofgodsordemons.Theysoughttodiscoverthe enduring,unchangingthingsoutofwhichtheworldismade,andhow theseenduringthingscangiverisetothechangesthatweperceive, aswellasthegreatvarietyofmaterialthingsthatexists.Thiswasthe beginningofman'sattemptstounderstandthematerialworldrationally, anditledtoatheoryofthenatureofmatter. TheearliestGreekphilosophersthoughtthatallthedifferentthings intheworldweremadeoutofasinglebasicsubstance.Somethought thatwaterwasthefundamentalsubstanceandthatallothersubstances werederivedfromit.Othersthoughtthatairwasthebasicsubstance; stillothersfavoredfire.Butneitherwater,norair,norfirewassatis- factory;noonesubstanceseemedtohaveenoughdifferentproperties togiverisetotheenormousvarietyofsubstancesintheworld.According toanotherview,introducedbyEmpedoclesaround450B.C.,thereare fourbasictypesofmatter - earth,air,fire,andwater - andallmaterial thingsaremadeoutofthem.Thesefourbasicmaterialscanmingle andseparateandreuniteindifferentproportions,andsoproduce thevarietyoffamiliarobjectsaroundusaswellasthechangesin suchobjects.Butthebasicfourmaterials,calledelements,were supposedtopersistthroughallthesechanges.Thistheorywasthe firstappearanceinourscientifictraditionofamodelofmatter, accordingtowhichallmaterialthingsarejustdifferentarrangements ofafewexternalelements. ThefirstatomictheoryofmatterwasintroducedbytheGreek philosopherLeucippus,bornabout500B.C.,andhispupilDemocritus, wholivedfromabout460B.C.to370B.C.Onlyscatteredfragmentsof thewritingsofthesephilosophersremain,buttheirideasweredis- cussedinconsiderabledetailbytheGreekphilosophersAristotle (389-321B.C.)andEpicurus(341-270B.C.),andbytheLatinpoet

Prologue

Lucretius(100-55B.C.).Itistothesementhatweowemostofour knowledgeofancientatomism. Thetheoryoftheatomistswasbasedonanumberofassumptions: (1)matteriseternal - nomaterialthingcancomefromnothing, norcananymaterialthingpassintonothing; (2)materialthingsconsistofverysmallindivisibleparticles - the word"atom"meant"uncuttable"inGreekand,indiscussingtheideas oftheearlyatomists,wecouldusetheword"indivisibles"insteadof theword"atoms"; (3)atomsdifferchieflyintheirsizesandshapes; (4)theatomsexistinotherwiseemptyspace(thevoid)whichsepa- ratesthem,andbecauseofthisspacetheyarecapableofmovement fromoneplacetoanother; (5)theatomsareinceaselessmotion,althoughthenatureand causeofthemotionarenotclear; (6)inthecourseoftheirmotionsatomscometogetherandform combinationswhicharethematerialsubstancesweknow;whenthe atomsformingthesecombinationsseparate,thesubstancesdecayor breakup.Thus,thecombinationsandseparationsofatomsgiveriseto thechangeswhichtakeplaceintheworld; (7)thecombinationsandseparationstakeplaceinaccordwith naturallawswhicharenotyetclear,butdonotrequiretheactionof godsordemonsorothersupernaturalpowers. Withtheaboveassumptions,theancientatomistswereableto workoutaconsistentstoryofchange,ofwhattheysometimescalled "coming-to-be"and"passingaway."Theycouldnotdemonstrate experimentallythattheirtheorywascorrect,andtheyhadtobesatis- fiedwithanexplanationderivedfromassumptionsthatseemed reasonabletothem.Thetheorywasa"likelystory."Itwasnot usefulforthepredictionofnewphenomena;butthatbecamean importantvalueforatheoryonlylater.Totheseatomists,itwasmore significantthatthetheoryalsohelpedtoallaytheunreasonablefear ofcapriciousgods. TheatomictheorywascriticizedseverelybyAristotle,whoargued logically - fromhisownassumptions - thatnovacuumorvoidcould existandthattheideasofatomswiththeircontinualmotionmustbe rejected.(Aristotlewasalsoprobablysensitivetothefactthatinhis timeatomismwasidentifiedwithatheism.)ForalongtimeAristotle's argumentagainstthevoidwaswidelyheldtobeconvincing.Onemust hererecallthatnotuntiltheseventeenthcenturydidTorricelli's experiments(describedinChapter11)showthatavacuumcouldindeed exist.Furthermore,Aristotlearguedthatmatteriscontinuousand infinitelydivisiblesothattherecanbenoatoms. Aristotledevelopedatheoryofmatteraspartofhisgrandscheme oftheuniverse,andthistheory,withsomemodifications,wasthought tobesatisfactorybymostphilosophersofnaturefornearlytwo thousandyears.Histheoryofmatterwasbasedonthefourbasic elements.Earth,Air,Fire,andWater,andfour"qualities,"Cold,Hot, Moist,andDry.Eachelementwascharacterizedbytwoqualities(the

AccordingtoAristotleinhisMeta-

physics,"Thereisnoconsensus concerningthenumberornatureof thesefundamentalsubstances.

Thales,thefirsttothinkaboutsuch

matters,heldthattheelementary substanceisclearliquid....He mayhavegottenthisideafromthe observationthatonlymoistmatter canbewhollyintegratedintoan object - sothatallgrowthdepends onmoisture.... "AnaximenesandDiogenesheld thatcolorlessgasismoreelemen- tarythanclearliquid,andthatin- deed,itisthemostelementaryof allsimplesubstances.Ontheother handHippasusofMetpontumand

HeraclitusofEphesussaidthatthe

mostelementarysubstanceisheat.

Empedoclesspokeoffourelemen-

tarysubstances,addingdrydustto thethreealreadymentioned...

AnaxagorasofClazomenaesays

thatthereareaninfinitenumberof elementaryconstituentsofmat- ter...."[Fromatranslationby

D.E.GershensonandD.A.Green-

berg.]

6ModelsoftheAtom

FIRE WATER

Laboratory

chemist. ofa16th-centuryal- nearertwotoeachside,asshowninthediagramattheleft).Thus theelement

EarthisDryandCold,

WaterisColdandMoist,

AirisMoistandHot,

FireisHotandDry.

AccordingtoAristotle,itisalwaysthefirstofthetwoqualitieswhich predominates.Inhisversiontheelementsarenotunchangeable;any oneofthemmaybetransformedintoanyotherbecauseofoneorboth ofitsqualitieschangingintoopposites.Thetransformationtakesplace mosteasilybetweentwoelementshavingonequalityincommon;thus EarthistransformedintoWaterwhendrynesschangesintomoistness. EarthcanbetransformedintoAironlyifbothofthequalitiesofearth (dryandcold)arechangedintotheiropposites(moistandhot). AswehavealreadymentionedintheTextChapter2,Aristotlewas abletoexplainmanynaturalphenomenabymeansofhisideas.Like theatomictheory,Aristotle'stheoryofcoming-to-beandpassing-away wasconsistent,andconstitutedamodelofthenatureofmatter.Ithad certainadvantagesovertheatomictheory:itwasbasedonelements andqualitiesthatwerefamiliartopeople;itdidnotinvolveatoms, whichcouldn'tbeseenorotherwiseperceived,oravoid,whichwas mostdifficulttoimagine.Inaddition,Aristotle'stheoryprovidedsome basisforfurtherexperimentation:itsuppliedwhatseemedlikea rationalbasisforthetantalizingpossibilityofchanginganymaterial intoanyother. Althoughtheatomisticviewwasnotaltogetherabandoned,itfound fewsupportersduringtheperiod300A.D.toabout1600A.D.Theatoms ofLeucippusandDemocritusmovedthroughemptyspace,devoidof spirit,andwithnodefiniteplanorpurpose.Suchanidearemained contrarytothebeliefsofthemajorreligions.JustastheAtheniansdid inthetimeofPlatoandAristotle,thelaterChristian,Hebrew,and Moslemtheologiansconsideredatomiststobeatheisticand"mate- rialistic"becausetheyclaimedthateverythingintheuniversecanbe explainedintermsofmatterandmotion. About300or400yearsafterAristotle,akindofresearchcalled alchemyappearedintheNearandFarEast.AlchemyintheNearEast wasacombinationofAristotle'sideasaboutmatterwithmethodsof treatingoresandmetals.Oneoftheaimsofthealchemistswasto change,or"transmute"ordinarymetalsintopreciousmetals.Although theyfailedtodothis,thealchemistsfoundandstudiedmanyofthe propertiesofsubstancesthatarenowclassifiedaschemicalproperties. Theyinventedsomepiecesofchemicalapparatus,suchasreaction vesselsanddistillationflasks,that(inmodernform)arestillcommon inchemicallaboratories.Theystudiedsuchprocessesascalcination, distillation,fermentation,andsublimation.Inthissensealchemymay beregardedasthechemistryoftheMiddleAges.Butalchemyleft unsolvedthefundamentalquestions.Attheopeningoftheeighteenth centurythemostimportantofthesequestionswere:(1)whatisa chemicalelement;(2)whatisthenatureofchemicalcompositionand chemicalchange,especiallyburning;and(3)whatisthechemical

Prologue

natureoftheso-calledelements,Earth,Air,FireandWater.Untilthese questionswereanswered,itwasimpossibletomakerealprogressin findingoutthestructureofmatter.Oneresultwasthatthe"scientific revolution"oftheseventeenthcentury,whichclarifiedtheproblemsof astronomyandmechanics,didnotincludechemistry. Duringtheseventeenthcentury,however,someforwardstepswere madewhichsuppliedabasisforfutureprogressontheproblemof matter.TheCopernicanandNewtonianrevolutionsunderminedthe authorityofAristotletosuchanextentthathisideasaboutmatter werealsomoreeasilyquestioned.Atomicconceptswererevived,and offeredawayoflookingatthingsthatwasverydifferentfromAristotle's ideas.Asaresult,theoriesinvolvingatoms(or"particles"or"corpus- cles")wereagainconsideredseriously.Boyle'smodelswerebasedon theideaof"gasparticles."Newtonalsodiscussedthebehaviorofa gas(andevenoflight)bysupposingittoconsistofparticles.In addition,therewasnowasuccessfulscienceofmechanics,through whichonemighthopetodescribehowtheatomsinteractedwitheach other.Thusthestagewassetforageneralrevivalofatomictheory. Intheeighteenthcentury,chemistrybecamemorequantitative; weighinginparticularwasdonemorefrequentlyandmorecarefully. Newsubstanceswereisolatedandtheirpropertiesexamined.The attitudethatgrewupinthelatterhalfofthecenturywasexemplifiedby thatofHenryCavendish(1731-1810),who,accordingtoabiographer, regardedtheuniverseasconsisting

Oneofthosewhocontributed

greatlytotherevivalofatomism wasPierreGassendi(1592 - 1655),a

Frenchpriestandphilosopher.He

avoidedthecriticismofatomism asatheisticbysayingthatGodalso createdtheatomsandbestowed motionuponthem.Gassendiac- ceptedthephysicalexplanationsof theatomists,butrejectedtheirdis- beliefintheimmortalityofthesoul andinDivineProvidence.Hewas thusabletoprovideaphilosophical justificationofatomismwhichmet someoftheseriousreligious objections. ...solelyofamultitudeofobjectswhichcouldbeweighed, numbered,andmeasured;andthevocationtowhichhecon- sideredhimselfcalledwastoweigh,number,andmeasure asmanyofthoseobjectsashisallotedthreescoreyearsand tenwouldpermit....HeweighedtheEarth;heanalysedthe

Air;hediscoveredthecompoundnatureofWater;henoted

withnumericalprecisiontheobscureactionsoftheancient elementFire.

ItwasCavendish,remember,who

designedthesensitivetorsional balancethatmadeitpossibleto findavalueforthegravitational constantG.(TextSec.8.8.) Eighteenth-centurychemistryreacheditspeakintheworkof AntoineLavoisier(1743-1794),whoworkedoutthemodernviewsof combustion,establishedthelawofconservationofmass,explainedthe elementarynatureofhydrogenandoxygen,andthecompositionof water,andaboveallemphasizedthequantitativeaspectsofchemistry. Hisfamousbook,TraiteElementairedeChimie(orElementsof Chemistry),publishedin1789,establishedchemistryasamodern science.Init,heanalyzedtheideaofanelementinawaywhichisvery closetoourmodernviews: ...if,bythetermelementswemeantoexpressthosesimple andindivisibleatomsofwhichmatteriscomposed,itisex- tremelyprobablethatweknownothingatallaboutthem;but ifweapplythetermelements,orprinciplesofbodies,to expressourideaofthelastpointwhichanalysisiscapable ofreaching,wemustadmitaselementsallthesubstances intowhichwearecapable,byanymeans,toreducebodies bydecomposition.Notthatweareentitledtoaffirmthat

Lavoisier'sworkontheconserva-

tionofmasswasdescribedinText

Chapter9.

ModelsoftheAtom

TRAITEELEMENTAIRE

DECHIMIE,

PRfeSENTtDANSUNORDRENOUVEAU

ETd'aPR^SLESD^COUVERTESUODERNES}

AvecFigures:

TarM.LavoistEA,deCAcaJimUdit

Sc'uncts,delaSocieiiRoyaUdeMedccme,dtt

Socieusd'AgriculturedeParisOd'OrUan.s,de

laSocieteRoyaUdeLondres,deI'lnftiiutde

Bologiie,delaSocieteHelvitiquedeBajle,dt

celtesdePhUadelphle,Harlem,Manchefler,Padoue,&c. |.TOMEPREMIER.

APARIS,

Ch"CuCHET,Libraire,rue&hotelSerpente.

M.DCC.LXXXIX.

SmaItPriviUgtdeTAcaidrnitdttScieru-ei6dtUSociMRoyaUdtMidteint

TitlepageofLavoisier'sIratteEle-

mentairedeChimie(1789) thesesubstancesweconsiderassimplemaynotbecom- poundedoftwo,orevenofagreaternumberofprinciples; butsincetheseprinciplescannotbeseparated,orrather sincewehavenothithertodiscoveredthemeansofsepa- ratingthem,theyactwithregardtousassimplesubstances, andweoughtnevertosupposethemcompoundeduntilex- perimentandobservationhaveprovedthemtobeso. Duringthelatterhalfoftheeighteenthcenturyandtheearlyyearsof thenineteenthcenturygreatprogresswasmadeinchemistrybecause oftheincreasinguseofquantitativemethods.Chemistsfoundoutmore andmoreaboutthecompositionofsubstances.Theyseparatedmany elementsandshowedthatnearlyallsubstancesarecompounds - combinationsofafairlysmallnumberofchemicalelements.They learnedagreatdealabouthowelementscombinetoformcompounds andhowcompoundscanbebrokendownintotheelementsofwhich theyarecomposed.Thisinformationmadeitpossibleforchemiststo establishmanyempiricallawsofchemicalcombination.Thenchemists soughtanexplanationfortheselaws. Duringthefirsttenyearsofthenineteenthcentury,theEnglish chemistJohnDaltonintroducedamodifiedformoftheoldGreek atomictheorytoaccountforthelawsofchemicalcombination.Itis herethatthemodernstoryoftheatombegins.Dalton'satomictheory wasanimprovementoverthatoftheGreeksbecauseitopenedthe wayforthequantitativestudyoftheatominthenineteenthcentury. Todaytheexistenceoftheatomisnolongeratopicofspeculation. Therearemanykindsofexperimentalevidence,notonlyforthe existenceofatomsbutalsofortheirinnerstructure.Inthisunitwe shalltracethediscoveriesandideasthatprovidedthisevidence. Thefirstconvincingmodernideaoftheatomcamefromchemistry. Weshall,therefore,startwithchemistryintheearlyyearsofthenine- teenthcentury;thisisthesubjectofChapter17.Thenweshallseethat chemistryraisedcertainquestionsaboutatomswhichcouldonlybe answeredbyphysics.Physicalevidence,accumulatedinthenineteenth centuryandtheearlyyearsofthetwentiethcentury,madeitpossible toproposemodelsforthestructureofatoms.Thisevidencewillbe discussedinChapters18and19.Someofthelatestideasaboutatomic theorywillthenbediscussedinChapter20.

Chemicallaboratoryofthe18thcentury

17.1Dalton'satomictheoryandthelawsofchemicalcombination11

17.2Theatomicmassesoftheelements14

17.3Otherpropertiesoftheelements:combiningcapacity16

17.4Thesearchfororderandregularityamongtheelements18

17.5Mendeleev'speriodictableoftheelements19

17.6Themodernperiodictable23

17.7Electricityandmatter:qualitativestudies25

17.8Electricityandmatter:quantitativestudies28

OCD^O®

oo®®©©®©®o

Dalton'ssymbolsfor'elements

"(1808)

CHAPTERSEVENTEEN

TheChemicalBasisof

AtomicTheory

17.1Dalton'satomictheoryandthelawsofchemicalcombination

TheatomictheoryofJohnDaltonappearedinhistreatise,A NewSystemofChemicalPhilosophy,publishedintwoparts,in

1808and1810.Themainpostulatesofhistheorywere:

(1)Matterconsistsofindivisibleatoms. ...matter,thoughdivisibleinanextremedegree,is neverthelessnotinfinitelydivisible.Thatis,theremust besomepointbeyondwhichwecannotgointhedivision ofmatter.Theexistenceoftheseultimateparticlesof mattercanscarcelybedoubted,thoughtheyareprobably muchtoosmallevertobeexhibitedbymicroscopicim- provements.Ihavechosenthewordatomtosignifythese ultimateparticles.... (2)Eachelementconsistsofacharacteristickindofidentical atoms.Thereareconsequentlyasmanydifferentkindsofatomsas thereareelements.Theatomsofanelement"areperfectlyalikein weightandfigure,etc." (3)Atomsareunchangeable. (4)Whendifferentelementscombinetoformacompound,the smallestportionofthecompoundconsistsofagroupingofadefinite numberofatomsofeachelement. (5)Inchemicalreactions,atomsareneithercreatednor destroyed,butonlyrearranged. Dalton'stheoryreallygrewoutofhisinterestinmeteorology andhisresearchonthecompositionoftheatmosphere.Hetriedto explainmanyofthephysicalpropertiesofgasesintermsofatoms (forexample,thefactthatgasesreadilymix,andthefactthatthe pressuresoftwogasesaddsimplywhenbotharecombinedina fixedenclosure).Hethoughtoftheatomsofdifferentelementsas beingdifferentinsizeandinmass.Inkeepingwiththequantitative spiritofthetime,hetriedtodeterminethenumericalvaluesfortheir relativemasses.Thiswasacrucialstepforward.Butbeforeconsider- inghowtodeterminetherelativemassesofatomsofthedifferent elements,letusseehowDalton'spostulatesmakeitpossibletoac- countfortheexperimentallyknownlawsofchemicalcombination. 11

SG17.1

Meteorologyisasciencethatdeals

withtheatmosphereandits phenomena - weatherforecasting isonebranchofmeteorology.

12TheChemicalBasisoftheAtomicTheory

Recallthatempiricallaws(suchas

these,orKepler'slawsofplanetary motion)arejustsummariesof experimentallyobservedfacts.They cryoutforsometheoreticalbase fromwhichtheycanbeshownto followasnecessaryconsequences.

Physicalsciencelooksforthese

deepernecessitiesthatdescribe nature,andisnotsatisfiedwith meresummariesofobservation, usefulthoughthesemaybeinitially. Dalton'satomictheoryaccountsinasimpleanddirectwayfor thelawofconservationofmass.AccordingtoDalton'stheory (postulates4and5),chemicalchangesareonlytherearrangements ofunionsofatoms.Sinceatomsareunchangeable(accordingto postulate3)rearrangingthemcannotchangetheirmasses.Hence, thetotalmassofalltheatomsbeforethereactionmustequalthe totalmassofalltheatomsafterthereaction.

Anotherwellknownempiricallawwhichcouldbeexplained

easilywithDalton'stheoryisthelawofdefiniteproportions.This lawstatesthatanyparticularchemicalcompoundalwayscontains thesameelements,andtheyareunitedinthesameproportionsof weight.Forexample,theratioofthemassesofoxygenandhy- drogenwhichcombinetoformwaterisalways7.94to1 : massofoxygen_7.94 massofhydrogen1 Ifthereismoreofoneelementpresentthanisneededforfull combinationinachemicalreaction,say10gramsofoxygenand onegramofhydrogen,only7.94gramsofoxygenwillcombine withthehydrogen.Therestoftheoxygen,2.06grams,remains uncombined. Thefactthatelementscombineinfixedproportionsimpliesthat eachchemicalcompoundwillalsodecomposeintodefinitepropor- tionsofelements.Forexample,thedecompositionofsodium chloride(commonsalt)alwaysgivestheresults:39percent sodiumand61percentchlorinebyweight. NowletusseehowDalton'smodelcanbeappliedtoachemical reaction,say,totheformationofwaterfromoxygenandhydrogen. AccordingtoDalton'ssecondpostulate,alltheatomsofoxygen havethesamemass;andalltheatomsofhydrogenhavethesame mass,whichisdifferentfromthemassoftheoxygenatoms.To expressthetotalmassofoxygenenteringintothereaction,we multiplythemassofasingleoxygenatombythenumberofoxygen atoms: SG17.2,17.3"/massof\massofoxygen=(oxygenatom)numberof^ oxygenatoms, Similarly,forthetotalmassofhydrogenenteringintothereaction: ",,/massof\/numberof\massofhydrogen-(^hydrogenatom]^\hydrogenatoms) Wecanfindtheratioofthemassofoxygentothemassofhydrogen bydividingthefirstequationbythesecondequationasshownat thetopofthenextpage:

Section17.113

massofmassofoxygen_oxygenatom massofhydrogenmassof hydrogenatom numberof oxygenatoms numberof hydrogenatoms Ifthemassesoftheatomsdonotchange(postulate3),thefirst ratioontherightsideoftheequationhasacertainunchangeable value.Accordingtopostulate4,ifthesmallestportionofthecom- poundwaterconsistsofadefinitenumberofatomsofeachelement (postulate4),thesecondratioontherightsideoftheequationhas acertainunchangeablevaluealso.Theproductofthetworatioson therightsidewillalwayshavethesamevalue.Thisequation, basedonanatomictheory,thustellsusthattheratioofthe massesofoxygenandhydrogenthatcombinetoformwaterwill alwayshavethesamedefinitevalue.Butthisisjustwhatthe experimentallawofdefiniteproportionssays.Dalton'stheory accountsforthislawofchemicalcombination - andthissuccess tendstoconfirmDalton'sconception.Dalton'stheorywasalso consistentwithanotherempiricallawofchemicalcombination,the lawofmultipleproportion.Forsomecombinationsofelements thereareasetofpossiblevaluesfortheirproportionsinforminga

SG17.4

^J^3r^

ApagefromDalton'snotebook,

showinghisrepresentationoftwo adjacentatoms(top)andofamole- culeorcompoundatom'(bottom)

JohnDalton(1766-1844).Hisfirst

lovewasmeteorology,andhekept carefuldailyweatherrecordsfor

46years - atotalof200,000observa-

tions.Hewasthefirsttodescribe colorblindnessinapublicationand wascolor-blindhimself,notexactly anadvantageforachemistwhohad toseecolorchangesinchemicals. (Hiscolorblindnessmayhelpto explainwhyDaltonissaidtohave beenaratherclumsyexperimenter.)

However,hisaccomplishmentsrest

notonsuccessfulexperiments,but onhisingeniousinterpretationof theknownresultsofothers.Dalton's notionthatallelementswerecom- posedofextremelytiny,indivisible andindestructibleatoms,andthat allsubstancesarecomposedof combinationsoftheseatomswas acceptedsoonbymostchemists withsurprisinglylittleopposition.

Thereweremanyattemptstohonor

him,butbeingaQuakerheshunned anyformofglory.Whenhereceived adoctor'sdegreefromOxford,his colleagueswantedtopresenthimto

KingWilliamIV.Hehadalways

resistedsuchapresentationbe- causehewouldnotwearcourt dress.However,hisOxfordrobes satisfiedtheprotocol.

14TheChemicalBasisoftheAtomicTheory

Dalton'svisualizationofthecom-

positionofvariouscompounds. setofcompounds.Daltonshowedthatthesecasescouldallbe accountedforbydifferentcombinationsofwholenumbersofatoms.

Thereareotherlawsofchemicalcombinationwhichare

explainedbyDalton'stheory.Becausetheargumentwouldbe lengthyandrelativelylittlethatisnewwouldbeadded,weshallnot elaborateonthemhere. Dalton'sinterpretationoftheexperimentalfactsofchemical combinationmadepossibleseveralimportantconclusions:(1)that thedifferencebetweenonechemicalelementandanotherwould havetobedescribedintermsofthedifferencesbetweentheatoms ofwhichtheseelementsweremadeup;(2)thattherewere,there- fore,asmanydifferenttypesofatomsastherewerechemical elements;(3)thatchemicalcombinationwastheunionofatomsof differentelementsintomoleculesofcompounds.Dalton'stheory alsoimpliedthattheanalysisofalargenumberofchemicalcom- poundscouldmakeitpossibletoassignrelativemassvaluesto theatomsofdifferentelements.Thispossibilitywillbediscussed inthenextsection.

Q1WhatdidDaltonassumeabouttheatomsofanelement?

Q2WhattwoexperimentallawsdidDalton'stheoryexplain?

Whatfollowsfromthesesuccesses?

17.2Theatomicmassesoftheelements

Thefirstgoodestimatesof

molecularsizecamefromthekinetic theoryofgasesandindicatedthat atoms(ormolecules)haddiameters oftheorderof10'"meter.Atoms arethusmuchtoosmallforordinary massmeasurementstobemadeon singleatoms.

SG17.5

SG17.6

OneofthemostimportantconceptstocomefromDalton'swork isthatofatomicmassandthepossibilityofdeterminingnumerical valuesforthemassesoftheatomsofdifferentelements.Dalton hadnoideaoftheactualabsolutemassofindividualatoms. Reasonablygoodestimatesofthesizeofatomsdidnotappearuntil about50yearsafterDaltonpublishedhistheory.Nevertheless,as Daltonwasabletoshow,relativevaluesofatomicmassescanbe foundbyusingthelawofdefiniteproportionsandexperimental dataonchemicalreactions.

Toseehowthiscouldbedonewereturntothecaseofwater,

forwhich,theratioofthemassofoxygentothemassofhydrogen isfoundbyexperimenttobe7.94:1.Ifoneknewhowmanyatoms ofoxygenandhydrogenarecontainedinamoleculeofwaterone couldcalculatetheratioofthemassoftheoxygenatomtothemass ofthehydrogenatom.ButDaltondidn'tknowthenumbersof oxygenandhydrogenatomsinamoleculeofwatersohemadean assumption.Asisdoneoften,Daltonmadethesimplestpossible assumption:thatamoleculeofwaterconsistsofoneatomof oxygencombinedwithoneatomofhydrogen.Bythisreasoning Daltonconcludedthattheoxygenatomis7.94timesmoremassive thanthehydrogenatom.Actually,thesimplestassumptionproved inthiscasetobeincorrect:twoatomsofhydrogencombinewith oneatomofoxygentomakeamoleculeofwater.Theoxygenatom has7.94timesthemassofthetwohydrogenatoms,andtherefore has15.88timesthemassofasinglehydrogenatom. Moregenerally,Daltonassumedthatwhenonlyonecompound

Section17.215

ofanytwoelementsisknowntoexist,moleculesofthecompound alwaysconsistofoneatomofeach.WiththisassumptionDalton couldfindvaluesfortherelativemassesofdifferentatoms - but laterworkshowedthatDalton'sassumptionofone-to-oneratioswas oftenasincorrectasitwasforwater.Bystudyingthecomposition ofwateraswellasmanyotherchemicalcompounds,Daltonfound thatthehydrogenatomappearedtohaveasmallermassthanthe atomsofanyotherelement.Therefore,heproposedtoexpressthe massesofatomsofallotherelementsrelativetothemassofthe hydrogenatom.Daltondefinedtheatomicmassofanelementas themassofanatomofthatelementcomparedtothemassofa hydrogenatom.Forexample,themassesofchlorineandhydrogen gasthatreacttoformhydrogenchloride(theonlyhydrogenand chlorinecompound)areintheratioofabout35V2to1;therefore thechlorineatomwouldbesupposedtohaveanatomicmassof

35V2atomicmassunits.Thisdefinitioncouldbeusedbychemists

inthenineteenthcenturyevenbeforetheactualvaluesofthe massesofindividualatoms(sayinkilograms)couldbemeasured directly. Duringthenineteenthcenturychemistsextendedandimproved Dalton'sideas.Theystudiedmanychemicalreactionsquantita- tively,anddevelopedhighlyaccuratemethodsfordetermining relativeatomicandmolecularmasses.Becauseoxygencombined readilywithmanyotherelementschemistsdecidedtouseoxygen ratherthanhydrogenasthestandardforatomicmasses.Oxygen wasassignedanatomicmassof16sothathydrogenwouldhave anatomicmassclosetoone.Theatomicmassesofotherelements couldbeobtainedbyapplyingthelawsofchemicalcombinationto thecompoundsoftheelementswithoxygen.Throughoutthenine- teenthcenturymoreandmoreelementswereidentifiedandtheir atomicmassesdetermined.Forexample,thetableonthenextpage lists63elementsfoundby1872,togetherwiththemodernvalues fortheatomicmasses.Thistablecontainsmuchvaluableinforma- tion,whichweshallconsideratgreaterlengthinSec.17.4.(The specialmarksonthetable - circlesandrectangles - willbeuseful then.) Q3Wasthesimplestchemicalformulaforthecompositionof amoleculenecessarilythecorrectone? Q4WhydidDaltonchoosehydrogenastheunitofatomicmass?

SG17.7

SG17.8

Thesystemofatomicmassesused

inmodernphysicalscienceisbased onthisprinciple,althoughitdiffers indetails(andthestandardfor comparisonbyinternationalagree- mentisnowcarboninsteadof hydrogenoroxygen.)

Theprogressmadeinidentifying

elementsinthe19thcenturymay beseeninthefollowingtable.

Totalnumberof

Year

16TheChemicalBasisoftheAtomicTheory

Elementsknownby1872,inorderof

increasingrelativeatomicmass.

Section17.317

cleaning,hastheformulaCCI4whereCstandsforacarbonatom thatcombineswithfourchlorineatoms.Anothercommonsub- stance,ammonia,hastheformulaNH3;inthiscaseoneatomof nitrogen(N)combineswiththreeatomsofhydrogen. Thereareespeciallysignificantexamplesofcombiningcapacity amongthegaseouselements.Forexample,thegashydrogenoccurs innatureintheformofmolecules,eachofwhichcontainstwo hydrogenatoms.Themoleculeofhydrogenconsistsoftwoatoms andhastheformulaHg.Similarly,chlorinehasthemolecular formulaCI2.Chemicalanalysisalwaysgivestheseresults.Itwould beinconsistentwithexperimenttoassigntheformulaH3orH4toa moleculeofhydrogen,orCI,CI3,orCI4toamoleculeofchlorine. Moreover,eachelementshowsgreatconsistencyinitscombining proportionswithotherelements.Forexample,calciumandoxygen seemtohavetwicethecombiningcapacityofhydrogenand chlorine - oneatomofhydrogenisenoughforoneatomofchlorine, buttwohydrogensareneededtocombinewithoxygenandtwo chlorinesarerequiredtocombinewithcalcium.

Theaboveexamplesindicatethatdifferentelementshave

differentcapacitiesforchemicalcombination.Itappearedthat eachspeciesofatomischaracterizedbysomedefinitecombining capacity(whichissometimescalledvalence).Atonetimecombin- ingcapacitywasconsideredasthoughitmightrepresentthe numberof"hooks"possessedbyagivenatom,andthusthenumber oflinksthatanatomcouldformwithothersofthesameordifferent species.Ifhydrogenandchlorineatomseachhadjustonehook (thatis,acombiningcapacityof1)wewouldreadilyunderstand howitisthatmoleculeslikeH2,CI2,andHClarestable,while certainotherspecieslikeH3,H2CI,HCI2,andCI3don'texistatall. Andifthehydrogenatomisthusassignedacombiningcapacity of1,theformulaofwater(H2O)requiresthattheoxygenatomhas twohooksoracombiningcapacityof2.TheformulaNH3for ammonialeadsustoassignacombiningcapacityofthreetonitro- gen;theformulaCH4formethaneleadsustoassignacapacityof

4tocarbon;andsoon.Proceedinginthisfashion,wecanassign

acombiningcapacitynumbertoeachoftheknownelements. Sometimescomplicationsariseas,forexample,inthecaseof sulfur.InH2Sthesulfuratomseemstohaveacombiningcapacity of2,butinsuchacompoundassulfurtrioxide(SO3),sulfurseems tohaveacombiningcapacityof6.Inthiscaseandothers,then, wemayhavetoassigntwo(orevenmore)differentpossiblecapaci- tiestoanelement.Attheotherextremeofpossibilitiesarethose elementslikeheliumandneonwhichhavenotbeenfoundasparts ofcompounds - andtotheseelementswemayappropriatelyassign acombiningcapacityofzero.

Theatomicmassandcombiningcapacitiesarenumbersthat

canbeassignedtoanelement;theyare"numericalcharacteriza- tions"oftheatomsoftheelement.Thereareothernumberswhich representpropertiesoftheatomsoftheelements,butatomicmass andcombiningcapacitywerethetwomostimportanttonineteenth-

Inthethirteenthcenturythe

theologianandphilosopherAlbert

Magnus(AlberttheGreat)intro-

ducedtheideaofaffinitytodenote anattractiveforcebetweensub- stancesthatcausesthemtoenter intochemicalcombination.Itwas notuntil600yearslaterthatit becamepossibletoreplacethis qualitativenotionbyquantitative concepts.Combiningcapacityisone oftheseconcepts.

Representationsofmoleculesformed

from"atomswithhooks. "Ofcourse thisconceptionisjustaguidetothe imagination.Therearenosuchme- chanicallinkagesamongatoms.

SG17.9

Sinceoxygencombineswitha

greatervarietyofelements, combiningcapacityofanelement wascommonlydeterminedbyits combinationwithoxygen.For example,anelementXthatisfound tohavean"oxideformula"XO wouldhaveacombiningcapacity equaltooxygen's:2.

18TheChemicalBasisoftheAtomicTheory

centurychemists.Thesenumberswereusedinattemptstofind orderandregularityamongtheelements - aproblemwhichwillbe discussedinthenextsection.

Q5Atthispointwehavetwonumberswhicharecharacter-

isticoftheatomsofanelement.Whatarethey?

Q6Assumethecombiningcapacityofoxygenis2.Ineachof

thefollowingmolecules,givethecombiningcapacityoftheatoms otherthanoxygen:CO,CO2,N2O5,Na^OandMnO.

Therewerealsomanyfalsetrails.

Thusin1829theGermanchemist

JohannWolfgangDbbereiner

noticedthatelementsoftenformed groupsofthreememberswith similarchemicalproperties.He identifiedthe"triads":chlorine, bromineandiodine:calcium, strontiumandbarium:sulfur, seleniumandtellurium:iron,cobalt andmanganese.Ineach"triad,"the atomicmassofthemiddlemember wasapproximatelythearithmetical averageofthemassesoftheother twoelements.Butallthisturned outtobeoflittlesignificance.

17.4Thesearchfororderandregularityamongtheelements

By1872sixty-threeelementswereknown;theyarelistedin thetableonp.16withtheiratomicmassesandchemicalsymbols. Sixty-threeelementsaremanymorethanAristotle'sfour:and chemiststriedtomakethingssimplerbylookingforwaysof organizingwhattheyhadlearnedabouttheelements.Theytriedto findrelationshipsamongtheelements - aquestsomewhatlike Kepler'searliersearchforrulesthatwouldrelatethemotionsof theplanetsofthesolarsystem. Inadditiontorelativeatomicmasses,manyotherpropertiesof theelementsandtheircompoundsweredetermined.Amongthese propertieswere:meltingpoint,boilingpoint,density,electrical conductivity,heatconductivity,heatcapacity(theamountofheat neededtochangethetemperatureofasampleofasubstanceby1 C)hardness,andrefractiveindex.Theresultwasthatby1870an enormousamountofinformationwasavailableaboutalarge numberofelementsandtheircompounds.

ItwastheEnglishchemistJ.A.R.Newlandswhopointedout

in1865thattheelementscouldusefullybelistedsimplyinthe orderofincreasingatomicmass.Whenthiswasdone,acuriousfact becameevident;similarchemicalandphysicalpropertiesappeared overandoveragaininthelist.Newlandsbelievedthattherewas inthewholelistaperiodicrecurrenceofelementswithsimilar properties:"...theeighthelement,startingfromagivenone,isa kindofrepetitionofthefirst,liketheeighthnoteinanoctaveof music."Newlands'proposalwasmetwithskepticism.Onechemist evensuggestedthatNewlandsmightlookforasimilarpatternin analphabeticallistofelements. Yet,existentrelationshipsdidindeedappear.Thereseemedto befamiliesofelementswithsimilarproperties.Onesuchfamily consistsoftheso-calledalkalimetals - hihium.sodium,potassium, rubidiumandcesium.WehaveidentifiedtheseelementsbyaDin thetableonp.16.Allthesemetalsaresimilarphysically.Theyare softandhavelowmeltingpoints.Thedensitiesofthesemetalsare verylow;infact,lithium,sodiumandpotassiumarelessdense thanwater.Thealkalimetalsarealsosimilarchemically.Theyall havecombiningcapacity1.Theyallcombinewiththesameother elementstoformsimilarcompounds.Theyformcompoundsreadily withotherelements,andsoaresaidtobehighly"reactive";conse-

Section17.519

quently,theydonotoccurfreeinnature,butarealwaysfoundin combinationwithotherelements. Anotherfamilyofelements,calledthehalogens,includes fluorine,chlorine,bromineandiodine.Thehalogensmaybefound inthetableonp.16identifiedbysmallcircles.

Althoughthesefourhalogenelementsexhibitsomemarked

dissimilarities(forexample,at25°Cthefirsttwoaregases,the thirdaliquid,thelastavolatilesolid),theyalsohavemuchincom- mon.Theyallcombineviolentlywithmanymetalstoformwhite, crystallinesalts(halogenmeans"salt-former");thosesaltshave similarformulas,suchasNaF,NaCl,NaBrandNal,orMgFz, MgCla,MgBraandMgla.Frommuchsimilarevidencechemists noticedthatallfourmembersofthefamilyseemtohavethesame valencewithrespecttoanyotherparticularelement.Allfourele- mentsfromsimplecompoundswithhydrogen(HF,HCI,HBr,HI) whichdissolveinwaterandformacids.Allfour,underordinary conditions,existasdiatomicmolecules;thatis,eachmolecule containstwoatoms.Butnotice:eachhalogenprecedesanalkali metalinthelist,althoughthelistingwasorderedsimplyby increasingatomicmass.Itisasifsomenewpatterniscomingout ofajig-sawpuzzle. Theelementswhichfollowthealkalimetalsinthelistalso formafamily,theonecalledthealkalineearthfamily;thisfamily includesberyllium,magnesium,calcium,strontiumandbarium. Theirmeltingpointsanddensitiesarehigherthanthoseofthe alkalimetals.Thealkalineearthsallhaveavalenceoftwo.They reacteasilywithmanyelements,butnotaseasilyasdothealkali metals.

Recognitionoftheexistenceofthesefamihesofelements

encouragedchemiststolookforasystematicwayofarrangingthe elementssothatthemembersofafamilywouldgrouptogether. Manyschemesweresuggested;themostsuccessfulandfarreach- ingwasthatoftheRussianchemistD.I.Mendeleev. Q7Whatarethosepropertiesofelementswhichrecursystem- aticallywithincreasingatomicmass?

17.5Mendeleev'speriodictableoftheelements

Mendeleev,examiningthepropertiesoftheelements,reached theconclusionthattheatomicmasswasthefundamental"numeri- calcharacterization"ofeachelement.Hediscoveredthatifthe elementswerearrangedinatableintheorderoftheiratomic masses - butinaspecialway,abitlikecardslaidoutinthegame ofsolitaire - thedifferentchemicalfamiliesturnedouttofallinto thedifferentverticalcolumnsofthetable.Therewasnoevident physicalreasonwhythisshouldbeso,butitwasahinttoward someremarkableconnectionamongallelements.

Modernchemistsusetheword

'valence"lessandlessinthesense weuseithere.Theyaremorelikely todiscuss"combiningnumber"or "oxidationnumber."Eventhe ideaofadefinitevalencenumber foranelementhaschanged,since combiningpropertiescanbedif- ferentunderdifferentconditions. Li7

20TheChemicalBasisoftheAtomicTheory

DmitriIvanovichMendeleev(men-

deh-lay>'-ef)(1834-1907)receivedhis firstsciencelessonsfromapolitical prisonerwhohadbeenpreviously banishedtoSiberiabytheCzar.Un- abletogetintocollegeinMoscow,he wasacceptedinSt.Petersburg,where afriendofhisfatherhadsomein- fluence.In1866hebecameaprofes- sorofchemistrythere:in1869hepub- lishedhisfirsttableofthesixty-three thenknownelementsarrangedac- cordingtoincreasingatomicmass.

HispaperwastranslatedintoGerman

atonceandsobecameknowntosci- entistseverywhere.Mendeleevcame totheUnitedStates,wherehestudied theoilfieldsofPennsylvaniainorder toadvisehiscountryonthedevelop- mentoftheCaucasianresources.His liberalpoliticalviewscausedhim oftentobeintroublewiththeoppres- siveregimeoftheCzars.

Asinthetableontheprecedingpage,Mendeleevsetdown

sevenelements,fromlithiumtofluorine,inorderofincreasing atomicmasses,andthenputthenextseven,fromsodiumto chlorine,inthesecondrow.Theperiodicityofchemicalbehavioris alreadyevidentbeforewegoontowritethethirdrow.Inthefirst columnontheleftarethefirsttwoalkalimetals.Intheseventh columnarethefirsttwomembersofthefamilyofhalogens.Indeed, withineachofthecolumnstheelementsarechemicallysimilar, having,forexample,thesamecharacteristiccombiningcapacity. WhenMendeleevaddedathirdrowofelements,potassium(K) camebelowelementsLiandNa,whicharemembersofthesame familyandhavethesameoxideformula,X2O,andthesame combiningcapacity1.NextintherowisCa,oxideformulaXOas withMgandBeaboveit.Inthenextspacetotheright,theelement ofnexthigheratomicmassshouldappear.Oftheelementsknown atthetime,thenextheavierwastitanium(Ti),anditwasplacedin thisspace,rightbelowaluminum(Al)andboron(B)byvarious workerswhohadtriedtodevelopsuchschemes.Mendeleev,how- ever,recognizedthattitanium(Ti)haschemicalpropertiessimilar tothoseofcarbon(C)andsilicon(Si).Forexample,apigment, titaniumwhite,Ti02,hasaformulacomparabletoCO2andSi02. Thereforeheconcludedthattitaniumshouldbeputinthefourth column.Then,ifallthisisnotjustagamebuthasdeepermeaning. Mendeleevthought,thereshouldexistahithertounsuspectedele- mentwithatomicmassbetweenthatofcalcium(40)andtitanium (50),andwithanoxideX2O3.Herewasadefiniteprediction. Mendeleevfoundalsoothercasesofthissortamongtheremaining elementswhentheywereaddedtothistableofelementswithdue regardtothefamilypropertiesofelementsineachcolumn. ThetablebelowisMendeleev'speriodicsystem,or"periodic table"oftheelements,asproposedin1872.Hedistributedthe63 elementsthenknown(with5indoubt)in12horizontalrowsor series,startingwithhydrogeninauniqueseparatedpositionatthe topleft,andendingwithuraniumatthebottomright.Allelements

Periodicclassificationoftheele-

ments;Mendeleev,1872.

GROUP - *

Section17.521

werelistedinorderofincreasingatomicmass(Mendeleev'svalues giveninparentheses),butweresoplacedthatelementswithsimilar chemicalpropertiesareinthesameverticalcolumnorgroup. ThusinGroupVIIareallthehalogens;inGroupVIII,onlymetals thatcaneasilybedrawnintowires;inGroupsIandII,metalsof lowdensitiesandmeltingpoints;andinI,thefamilyofalkali metals. Thetableatthebottomofthepreviouspageshowsmanygaps. Also,notallhorizontalrows(series)haveequallymanyelements. Nonetheless,thetablerevealedanimportantgeneralization; accordingtoMendeleev,

Foratruecomprehensionofthematteritisveryimpor-

tanttoseethatallaspectsofthedistributionofthe elementsaccordingtotheorderoftheiratomicweights expressessentiallyoneandthesamefundamentaldepen- dence - periodicproperties. Thereisgradualchangeinphysicalandchemicalpropertieswithin eachverticalgroup,butthereisamorestrikingperiodicchangeof propertiesinthehorizontalsequence. Thisperiodiclawistheheartofthematterandarealnovelty. PerhapswecanbestillustrateitasLotharMeyerdid,bydrawing agraphthatshowsthevalueofsomemeasureablephysicalquantity asafunctionofatomicmass.Belowisaplotoftherelative atomicvolumesoftheelements,thespacetakenupbyanatomin theliquidorsolidstate.Eachcircledpointonthisgraphrepresents anelement;afewofthepointshavebeenlabeledwiththe identifyingchemicalsymbols.Viewedasawhole,thegraph demonstratesastrikingperiodicity:asthemassincreasesstarting withLi,theatomicvolumefirstdrops,thenincreasestoasharp maximum,dropsoffagainandincre

Atom Documents PDF, PPT , Doc

[PDF] bitcoin atom

  1. Science

  2. Physics

  3. Atom

[PDF] build an atom basics phet

[PDF] can atom be seen under microscope

[PDF] can you see atom under microscope

[PDF] carbon atom how many electrons

[PDF] central atom exception to octet rule

[PDF] chemistry atom practice test

[PDF] chemistry atom quizlet

[PDF] cornell university atom

[PDF] cornell university atom picture

Politique de confidentialité -Privacy policy