[PDF] PROPRIÉTÉS DES SECTIONS Moment statique d'une surface;. •





Previous PDF Next PDF



PROPRIÉTÉS DES SECTIONS

Moment statique d'une surface;. • Moment d'inertie;. • Module de section;. • Rayon de giration. 8.1.2 Surface neutre et axe neutre. Lorsqu'une poutre est 



RDM – Flexion Manuel dutilisation

6.8 Exemple 8 – dimensionnement d'une poutre soumise `a son poids propre . . . . . . . . 21 le moment quadratique par rapport `a l'axe z : Iz (en cm4).



Cours de Mécanique Statique et RDM

COURS 4 : FLEXION DES POUTRES (RDM). SOMMAIRE. I. Définition de la flexion . Moment quadratique d'une surface plane par rapport à un axe de son plan .



CONTRAINTES DANS LES POUTRES EN FLEXION

On est au-dessus de l'AN et M > 0 donc la contrainte sera compressive. 4) calculons le moment d'inertie par rapport à l'axe neutre: I1 = (6 cm x (2 



ENSIM 4A Statique des poutres ( résistance des matériaux )

12 févr. 2019 Pour savoir `a tout instant o`u vous en êtes dans votre formation ... moments quadratiques et polaire passant par le barycentre H d'une ...



RDM : FLEXION des POUTRES

Avec E : module de Young de la poutre (Pa). I : Moment quadratique de la poutre (m. 4. ) Pour notre poutre entre 0 et L/2



Note de calcul du béton armé BAEL 91

Section des armatures inférieures : Le moment fléchissant maximal développé à mi-travée de la poutre Mu=42 311N.m. On connaît la valeur du moment réduit ultime 



Cinématique composition de mouvements

angle de torsion unitaire en rad·m-1. ? ? : angle de torsion en rad. ? x : longueur de la poutre en m. ? IG : moment quadratique polaire de la section en 



Résistance des matériaux : élasticité méthodes énergétiques

20 juin 2011 2.5 Flexion des poutres `a plan moyen : mod`ele de Bernoulli . ... o`u Iz est le moment quadratique de la section droite par rapport `a ...



Calcul des structures

3 mars 2015 Hypothèses fondamentales de la théorie des poutres . ... (ou moments quadratiques) de la section (?) par rapport aux axes (Gx) (Gy)



[PDF] Table des Matières

Les moments quadratiques Ix et Iy sont toujours positifs tandis que le moment produit Ixy peut être positif négatif ou nul • Exemple 1 5



[PDF] PROPRIÉTÉS DES SECTIONS

Le moment d'inertie des sections droites est d'une grande importance dans la conception des poutres et colonnes Les tableaux à la fin du chapitre portant sur 



[PDF] Moments quadratiques

Définition: Moment quadratique par rapport à l'ax • Poutre à section rectangulaire: Premier calcul: = ds = dy La primitive de est



[PDF] CARACTERISTIQUES DES SECTIONS PLANES - Cesfa BTP

On demande de calculer le moment statique et le moment d'inertie de cette section par rapport aux deux axes suivants : - Un axe vertical (y) passant par le côté 



[PDF] RESISTANCE DES MATERIAUX - univ-ustodz

concevoir une pièce mécanique un ouvrage d'art ou tout objet utilitaire Exercice 6 : Trouver le moment fléchissant dans la poutre ci-dessous aux 



[PDF] resistance des materiaux - Lycée du Pays de Soule

On désigne par poutre un solide dont la section varie progressivement Le moment quadratique polaire de la surface complète S est égal à : IO = ? r²



[PDF] RMChap4(MomentInertie)pdf

Rechercher la position du centre de gravité G de la poutre composée d'un IPE 200 d'un UPN 120 et d'un carré de 50 Rechercher ensuite le moment d'inertie 



[PDF] 4-SYNTHESE-MOMENTS QUADRATIQUESpdf

Définition : le moment quadratique comme l'aire de la surface caractérise la géométrie d'une section droite On définit des moments quadratiques par rapport 



Moment Quadratique PDF Grandeur physique Espace - Scribd

Le Moment quadratique est une mesure en mètre puissance 4 (Quatre : quadra) Il exprime le rapport à un point ou à un axe notamment afin de définir la 

:
8

PROPRIÉTÉS DES SECTIONS

8.1.1 Généralités

Dans l'étude des déflexions des poutres ainsi que du flambage des colonnes, on est amené à utiliser

l'une ou l'autre des propriétés des sections droites, qui sont des caractéristiques purement

géométriques. On retrouve: • Axe neutre d'une surface; • Centre de gravité d'une surface; • Moment statique d'une surface; • Moment d'inertie; • Module de section; • Rayon de giration.

8.1.2 Surface neutre et axe neutre

Lorsqu'une poutre est soumise à des forces qui tendent à la courber, les fibres situées a u-dessus (ou

au-dessous) d'un certain plan de la poutre sont en compression et elles se raccourcissent, tandis que

les fibres situées au-dessous (ou au-dessus) de ce plan sont tendues et elles s'allongent. Le plan

intermédiaire en question est appelé surface neutre de la poutre (voir figure 8.1).

Pour une section droite de la poutre, la li

gne correspondant à la surface neutre s'appelle axe neutre

de cette section. L'axe neutre passe toujours par un point particulier "cg" de la section droite d'une

poutre nommé centroïde ou centre de gravité de cette section. 137
Axe neutre (A.N.): C'est le plan qui ne subit aucun allongement pendant la flexion d'une poutre.

Fig. 8.1

L'axe neutre A.N. passe par le centre de gravité ou centroïde.

8.1.3 Centre de gravité (cg)

Le centre de gravité (cg) ou centroïde d'un corps ou d'une surface est un point imaginaire où toute

cette surface peut être considérée comme concentrée. C'est aussi le point où le poids d'un corps est

concentré.

Si un corps est homogène, c'est-à-dire constitué d'un seul matériau, le cg dépend seulement de la

forme du corps. Si un corps possède un axe de symétrie, son cg est situé sur cet axe (fig. 8.2).

Fig. 8.2

138

L'axe de symétrie partage le corps en deux parties de même surface, de même poids. Si un corps

possède au moins deux axes de symétrie (ou médiane), son cg se trouve au point d'intersection de

ces axes. Le cg n'est pas toujours dans la matière. La figure 8.3 illustre le centre de gravité de

différentes surfaces régulièrement utilisées.

Fig. 8.3

La position de quelques autres surfaces est donnée dans les tableaux à la fin du chapitre. D'autres cas

particuliers peuvent être retrouvés dans les "Handbooks" ou livres spécialisées. 139

8.2 MOMENT D'INERTIE

8.2.1 Moment d'inertie

Considérons une surface plane A dans laquelle

un élément de surface a i infiniment petit est indiqué. Cet élément se trouve à une distance d i d'un axe quelconque "o". On appelle moment d'inertie I i de l'élément de surface a i par rapport à l'axe considéré "o", le produit de cet élément par le carré de la distance d i A a i d i o

Fig. 8.7

I i(o) = a i x d i 2 (8.3 a) Si la surface A est subdivisée en N éléments infiniment petits a 1 , a 2 , a 3 , ... , a N dont les distances respectives à l'axe sont d 1 , d 2 , d 3 , ... , d N alors le moment d'inertie de cette surface par rapport au même axe "o" est donné par la relation suivante: I o = I 1(o) + I 2(o) + ... + I N(o) I o = a 1 d 1 2 + a 2 d 2 2 + ... + a N d N 2 I o = a i d i 2 [m 4 ] (8.3) Le moment d'inertie des sections droites est d'une grande importance dans la conception des poutres

et colonnes. Les tableaux à la fin du chapitre portant sur les propriétés des sections donnent des

valeurs des moments d'inertie de plusieurs profilés d'acier fréquemment utilisés dans la construction.

140

Les autres moments d'inertie peuvent être trouvés dans des "handbooks". La figure suivante donne

quelques moments d'inertie de figures communes. cg axe b h I cg b h 3 12 cg axe I cg d 4 64
b h cg axe I cg b h 3 36

Fig. 8.8

8.2.2 Théorème des axes parallèles

Si on connaît le moment d'inertie d'une surface par rapport à un axe qui passe par son centre de

gravité, on peut connaître son moment d'inertie par rapport à tout autre axe parallèle à ce dernier. Il

suffit d'ajouter la quantité As 2

à son I

cg

Théorème des axes parallèles:

I = I cg + As 2 (8.4) où s = distance entre l'axe choisi et l'axe qui passe par le cg.

A = aire de la section

I cg = moment d'inertie par rapport à un axe qui passe par le cg. 141
EXEMPLE 8.2: Calculer le moment d'inertie du rectangle ci-dessous par rapport à l'axe z passant par sa base.

Solution:

I z = I cg + As 2 b h 3 12 + (bh) h 2 2 b h 3 12 bh 3 4 b h 3 3 cg b h z h/2

Fig. 8.9

Pour les sections complexes ou composées de plusieurs sections simples, le moment d'inertie est

égal à la somme des moments d'inertie de chacune des sections. Si la surface composée possède une

surface creuse, le moment de la section creuse est alors négatif. Dans le cas des surfaces composées,

le théorème des axes parallèles est alors très utile. Comme par exemple, la section en T du premier

exemple, si on veut savoir le moment d'inertie de la surface totale, on doit utiliser le théorème, c'est

ce que nous ferons dans le prochain exemple. EXEMPLE 8.3: Calculer le moment d'inertie par rapport à l'axe neutre de la section en T ci- dessous. (fig. 8.10)

Solution:

Nous avions déjà trouvé le cg de la surface totale dans le premier exemple, on sait que l'axe neutre passe par le centre de gravité. Maintenant on veut le moment d'inertie par rapport à cet axe. I AN = I

AN(surface 1)

+ I

AN(surface 2)

I

AN(surface 1)

= I cg1 + A 1 s 1 2 I

AN(surface 2)

= I cg2 + A 2 s 2 2 1 cm

4,5 cm

A 2

2,59 cm

2 cm 5 cm 6 cm A.N. cg A 1

Fig. 8.10

142
I cg1

2 cm (5 cm)

3 12 = 20,833 cm 4 et I cg2

6 cm (2 cm)

3 12 = 4 cm 4 I

AN(surf 1)

= 20,833 cm 4 + (2 cm x 5 cm)(1,91 cm) 2 = 20,833 cm 4 + 36,481 cm 4 = 57,314 cm 4 I

AN(surf 2)

= 4 cm 4 + (2 cm x 6 cm)(1,59 cm) 2 = 4 cmquotesdbs_dbs35.pdfusesText_40
[PDF] moment quadratique formulaire

[PDF] ranger dans l'ordre synonyme

[PDF] modèle de fiche de suivi collège

[PDF] moments et actes fondateurs de la république stmg

[PDF] exemple fiche de suivi

[PDF] fiche de suivi attitude élève

[PDF] modèle de note de synthèse

[PDF] note de synthèse exemple pdf

[PDF] momo petit prince des bleuets lire en ligne

[PDF] ranger des nombres dans l'ordre croissant

[PDF] évaluation théâtre seconde

[PDF] momo petit prince des bleuets chapitre 1

[PDF] tout savoir sur le théatre bac francais

[PDF] kamo l'idée du siècle exploitation pédagogique

[PDF] kamo l'idée du siècle pdf