[PDF] Triangularisation jordanisation exponentielle de matrices 1





Previous PDF Next PDF



Fiche technique 5 - Diagonalisation trigonalisation

Diagonalisation trigonalisation. Diagonalisation de matrices. • Le principe pour diagonaliser en pratique une matrice est simple : calculer les espaces propres 



Trigonalisation des matrices carrées

Toute matrice trigonalisable de Mn(K) admet toujours n valeurs propres distincres ou confondues. Une grande partie de ce chapitre est destinée `a étudier la 



Trigonalisation et diagonalisation des matrices

Nous présentons deux applications immédiates de la diagonalisation des matrices avec le calcul des puissances d'une matrice diagonalisable et la résolution des 



CORRECTION DU TD 3 Exercice 1

Trigonalisation. Pour trouver une base dans laquelle s'exprime sous la forme d matrice est trigonalisable et la décomposition de Jordan de cette matrice est :.



Trigonalisation dune matrice 3x3 On note Soit la matrice : 1

Trigonalisation d'une matrice 3x3. On note. Soit la matrice : 1) Déterminer le polynôme caractéristique de et en déduire qu'il est scindé avec une racine 



Décomposition de Dunford et réduction de Jordan

Nous allons montrer que toute matrice dont le polynôme caractéristique est scindé



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

x1 +x2 +3x3 = b1. 2x1 +x3. = b2 x1 +x2 +2x3 = b3. Page 55. CHAPITRE 2. LES Exercice 14.— Diagonaliser ou trigonaliser dans Mn(C) en donnant la matrice de pas ...



Triangularisation jordanisation

https://www.math.univ-paris13.fr/~schwartz/L2/jordan.pdf



Calcul Matriciel et Applications

2.6 Trigonalisation de matrices . = −3I − 3A − A2. En appliquant directement la formule on a det(A) = −1 χA(x) = −(x3 + 3x3 + 3x + 1)



Sommaire

Diagonalisation délicate d'une matrice 3x3 Trigonalisation « facile » d'une matrice .............................................................. 41.



Fiche technique 5 - Diagonalisation trigonalisation

Diagonalisation trigonalisation. Diagonalisation de matrices. • Le principe pour diagonaliser en pratique une matrice est simple : calculer les espaces 



Trigonalisation des matrices carrées

Toute matrice trigonalisable de Mn(K) admet toujours n valeurs propres distincres ou confondues. Une grande partie de ce chapitre est destinée `a étudier la 



chapitre 7 : Trigonalisation et diagonalisation des matrices

Nous présentons deux applications immédiates de la diagonalisation des matrices avec le calcul des puissances d'une matrice diagonalisable et la résolution des 



CORRECTION DU TD 3 Exercice 1

Trigonalisation. Pour trouver une base dans laquelle s'exprime sous la forme d'une matrice triangulaire supérieure il suffit de compléter la famille.



TD 4. Diagonalisation et trigonalisation

Écrire la matrice A de chacun de ces endomorphismes dans la base B. e. f5(x) = ?(4x1 + 2x3)e1 + x2e2 + (5x1 + x2 + 3x3)e3.



R´EDUCTION DES ENDOMORPHISMES

2.1 Matrices diagonales – endomorphismes diagonalisables 3.3 Méthode de trigonalisation – Exemple ... x2(t)=4x1(t) ? 2x2(t) ? 3x3(t) ? 3x4(t).



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

I. Les matrices et abrégé d'algèbre linéaire. 23. 1. Les espaces vectoriels Trigonalisation des matrices . ... x1 +x2 +3x3 = b1.



fic00056.pdf

Démontrer que A est diagonalisable et déterminer une matrice D diagonale et une matrice P inversible telles A = PDP?1. 3. Donner en le justifiant mais sans 



Triangularisation jordanisation

https://www.math.univ-paris13.fr/~schwartz/L2/jordan.pdf



Walanta

Diagonalisation et trigonalisation. Savoir diagonaliser une matrice carrée : valeurs propres vecteurs propres. ... matrice 3x3 (règle de Sarrus).



Fiche technique 5 - Diagonalisation trigonalisation

• La trigonalisabilité d’une matrice s’obtient après le calcul de son polynôme caractéristique et le constat que ce polynôme est scindé sur le corps de référence de la matrice • Si la matrice est considérée comme matrice complexe elle est donc toujours trigonalisable



Fonctions de matrice - LibreOffice Help

car tout polynôme en une matrice triangulaire supérieure est une matrice triangulaire supérieure Exercice 11 : [énoncé] a) u admet une valeur propre ? et le sous-espace propre associé est stable par v Cela assure que u et v ont un vecteur propre en commun e 1 On complète celui-ci en une base (e 1e 2 en) Les matrices de u et v



Triangularisation jordanisation exponentielle de matrices 1

La d´emonstration fournit une m´ethode de triangularisation On va donc en donner les grandes lignes Elle est bas´ee sur une m´ethode de r´ecurrence On suppose donc que l’on sait d´emontrer le th´eor`eme a l’ordre n ? 1 Puis on cherche une valeur propre ? et un vecteur propre e de l’endomorphisme associ´e (ou ce qui est



Comment calculer une matrice de 3x3?

Sélectionnez une plage de 3x3 cellules sur une autre zone de la feuille de calcul, saisissez la formule =10*A1:C3 et confirmez cette saisie en utilisant la combinaison de touches Ctrl+Maj+Entrée. Le résultat est une matrice de 3x3 dans laquelle les valeurs individuelles de la plage de cellules (A1:C3) sont multipliées par un facteur de 10.

Quels sont les exercices de diagonalisation des matrices ?

Nous proposons des exercices de diagonalisation des matrices. Une matrice est diagonalisable si le nombre de ces valeurs propres égale à la dimension de l’espace dans lequel est définie. D’autre part, on donne des applications de la diagonalisation pour résoudre les systèmes linéaires et calcul de l’exponentielle de matrices.

Comment résoudre une matrice triangulaire?

La méthode directe LU Pour résoudre , on cherche à écrire où ? L est une matrice triangulaire inférieure avec des 1 sur la diagonale, ? U est une matrice triangulaire supérieure. La résolution de est alors ramenée aux résolutions successives des systèmes échelonnés et . V.3. La méthode de Gauss

Comment savoir si une matrice est diagonale ou triangulaire ?

Certains ont déjà été évoqués précédemment mais il a paru bon de les rappeler afin de te faire une idée précise de ces différents cas particuliers qui se retrouvent très souvent en exercice !! Si une matrice est diagonale ou triangulaire, alors les valeurs propres sont les éléments diagonaux de la matrice.

Triangularisation, jordanisation, exponentielle dematrices

1 Triangularisation

SoientEun espace vectoriel de dimensionnet?un endomorphisme deEde matrice Adans une base donn´ee. On suppose que le polynˆome caract´eristique est scind´e et soit

1,...,λnles valeurs propres (non n´ecessairement 2 `a 2 distinctes).

Th´eor`eme 1.1.Il existe une base telle queP´etant la matrice de changement de base la matriceP-1APestr triangulm`ere sup´erieure. P -1AP=(

1?...?

0λ2?...?

0...0λi? ?

0...0λn)

La d´emonstration fournit une m´ethode de triangularisation. On va donc en donner les grandes lignes. Elle est bas´ee sur une m´ethode de r´ecurrence. On suppose donc que l"on sait d´emontrer le th´eor`eme `a l"ordren-1. Puis on cherche une valeur propreλet un vecteur propreede l"endomorphisme associ´e (ou ce qui est

´equivalent de la matriceA).

On compl`ete en une base deE: (e,v2,...,vn). La matrice de?est dans cette base de la forme : ?λ L 0B?

Soit siPest la matrice de passage

P -1AP=?λ L 0B? On applique `a la matriceB(n-1,n-1) l"hypoth`ese de r´ecurrence. C"es-`a-dire que l"on peut trouver des vecteursw2,...,wn(qui forment une base du sous-espace engendr´e par v

2,...,vn) tels que si on noteP?la matrice de passage de (v2,...,vn) `a (w2,...,wn) la

matriceP?-1BP?est triangul`ere. Donc ?1 0

0P?-1?

P -1AP?1 0 0P?? =?1 0

0P?-1??λ L

0B?? 1 0 0P?? Soit ?1 0

0P?-1?

P -1AP?1 0 0P?? =?λ LP?

0P?-1BP??

qui a les propri´et´es requises. 1

2 R´eduction de Jordan en dimension2et3

On va donner une autre mani`ere de proc´eder dans des cas particuliers. D"abord : D´efinition 2.1.On appelle r´eduite de JordanJk(λ)la matrice(k,k): ((((λ1 0...

0λ1...

...0λ1

0...0λ)

Une matriceA(2,2), ou un endomorphisme?, dont le polynˆome caract´eristique est scind´e et qui n"est pas diagonalisable a une valeur propre doubleλ. Proposition 2.2.Sous l"hypoth`ese pr´ec´edente il existePtelle queP-1AP=J2(λ). On dira qu"on a jordanis´e la matrice. Une base de Jordanisation est obtenue de la mani`ere suivante. On choisit un vecteurvtelle quew= (?-λId)(v)soit non nul. Alors(w,v) (dans l"ordre) est une telle base. On notera quewest un vecteur propre. On notera que comme on a suppos´eAnon diagonalisable on a ´elimin´e le casA=λI2qui a une valeur propre double. Pour une matriceA(3,3), ou un endomorphisme?, dont le polynˆome caract´eristique est scind´e et qui n"est pas diagonalisable on a deux situations possibles : •Une valeur propre tripleλ. •Une valeur propre doubleλet une valeur propre simpleμ. Proposition 2.3.Sous l"hypoth`ese pr´ec´edente : Dans le premier cas on a toujours(?-λId)3= 0, par Caley Hamilton et par hypoth`ese ??=λId. •Sidim(Eλ) = 1il existePtelle que P -1AP=J3(λ) dim(Eλ) = 1ceci a lieu si et seulement si(?-λId)2?= 0. •Sidim(Eλ) = 2il existePtel que P -1AP=?J2(λ) 0

0λ?

ceci a lieu si et seulement si(?-λId)2= 0. Pour le premier sous cas une base de Jordanisation est obtenue de la mani`ere suiv- ante. On choisit un vecteurwtel queu= (?-λId)2(w)soit non nul. Alors(u,v,w), avecv= (?-λId)(w), (dans l"ordre) est une telle base. On notera quewest un vecteur propre. Pour le second sous cas une base de Jordanisation est obtenue de la mani`ere suiv- ante. On choisit un vecteurvtel queu= (?-λId)(v)soit non nul. Alorsuest un vecteur propre. On compl`eteuen une base deEλparw,(u,v,w), (dans l"ordre) est la (une) base had oc. 2 •Dans le second cas on peut trouverPtelle que P -1AP=?J2(λ) 0

0μ?

On cherche un vecteurwpropre associ´e `aμ. Puis on cherche une base de¯Eλ= ker(?-λId)2. Par hypoth`ese ce sous-espace est de dimension2etdim(Eλ) = 1. On cherche un vecteurvde¯Eλtel queu= (?-λId)(v)?= 0,(u,v,w)fournit la base cherch´ee.

Voici un exemple, soit la matriceA:

(2-2 2 2 2 2

1 1 2)

2 est valeur propre triple, le sous espace propre est de dimension 1, (1,1,-1) est vecteur

propre. On cherche un vecteur?wdeR3tel que (A-2I3)2(?w)?= 0. On peut prendre le vecteur u

3= (0,0,1). Auquel cas on poseu2= (A-2I3)(u3) = (2,2,0) etu1= (A-2I3)(u2) =

(-4,4,4) et (u1,u2,u3) forment une base de jordanisation. Comme application on peut calculerAnpour tout entiern,n≥0. On poseN=A-2I3. On sait queN3= 0 (Caley Hamilton ou on fait un calcul direct). On ´ecrit A n= (2I3+N)n= 2nI3+n2n-1N+n(n-1)22n-2N2 par application de la formule de Newton, en utilisantN3= 0. CommeN2est ´egale `a (-2 2-4 2-2 4

2-2 4)

on laisse au lecteur le soin d"´ecrire les formules finales.

Voici un autre exemple, soit la matriceA:

(1 0 1 -1 2 1

1-1 1)

1 est valeur propre double, 2 est valeur propre simple.

Le vecteure3= (1,0,1) est vecteur propre associ´e `a 2. Le vecteure3= (1,1,0) est vecteur propre associ´e `a 2,E1est de dimension 1. On cherche une base du sous-espace¯E2= ker(?-2Id)2. On constate quee1= (0,0,1) ete2= (1,0,1) forment une telel base et que (?-2Id)(e2) =e1.

On a la base souhait´ee.

3

3 Sous-espaces caract´eristiques

Si?est un endomorphisme d"un espace vectorielEde dimensionndont le polynˆome caract´eeistique est scind´e : c ?(X) = (-1)n(X-λ1)α1...(X-λr)αr

avec lesλi2 `a 2 distincts on d´efinit le sous-espace caract´erisqtique associ´e `aλipar

Eλi= ker(?-λiId)αi

Il est clair que

E

λi?¯Eλi

On admettra

E=¯Eλi?¯Eλ2?...?¯Eλr

4 Jordanisation en dimension4

Cet exemple sera juste abord´e, voici un descriptif des situations possibles avec une valeur propre d"ordre 4. D"abord on remarque que (?-λId)4= 0. •La matriceI4. •Si dim(Eλ) = 1 alors il existePtelle queP-1AP=J4(λ). On trouve une base de Jordanisation en cherchantutel que (?-λId)3(u)?= 0. •Si dim(Eλ) = 2 alors il y a deux sous cas, soit (?-λId)2= 0. existePtelle que P -1AP=?J2(λ) 0

0J2(λ)?

On trouve une base de Jordanisation en cherchant deux vecteurs ind´ependantsxet vtel queu= (?-λId)(x)?= 0 etw= (?-λId)(v)?= 0, (w,v,u,x) est la base cherch´ee. soit (?-λId)2?= 0; alors il existePtelle que P -1AP=?J3(λ) 0

0λ?

On trouve une base de Jordanisation en cherchant un vecteurutel quew= (?- λId)2(u)?= 0, on posev= (?-λId)(v), on compl`ete la base du sous-espace propre parx, (w,v,u,x) est la base cherch´ee. •Enfin si dim(Eλ) = 3 alors il existePtelle que P -1AP=( (J

2(λ) 0 0

0λ0

0 0λ)

On se reportera au cas (3,3).

4

5 Classification des matrices r´eelles et complexes(2,2)

r´ecapitulatif

Faire le r´ecapitulatif au tableau.

6 Exponentielle de matrices

Cette section est rajout´ee ici en compl´ement en fin de l"alg`ebre lin´eaire. Etant donn´ee

une matrice carr´eeA(n,n) on poseAk= (a(k) i,j Proposition 6.1.Pour toute matriceAet tout(i,j)la s´erie num´erique de terme g´en´eral (index´e park)a(k) i,jk!converge absolument. D´efinition 6.2.La matriceeA= exp(A)est donn´ee par exp(A) = (? k≥0a (k) i,jk!) exp(( 10...

0λ20...

...0λn) ((e

λ10...

0eλ20...

...0eλn) •SiAB=BAalors exp(A+B) = exp(A)exp(B) = exp(B)exp(A) (exp(A))-1= exp(-A) exp(P-1AP) =P-1exp(A)P ddt(exp(tA)) =Aexp(tA) •Calculer exp(Nk). •Montrer que expJk(tλ) =etλ( (((((((((1tt22...tii!...tk-1(k-1)!

0 1t ...tk-2(k-2)!

0... ... ... ...

0...1tt220... ...1t

0... ... ...1)

5quotesdbs_dbs17.pdfusesText_23
[PDF] trigonometry corbettmaths worksheets

[PDF] trigonometry worksheet 4.1 chapter 4 answers

[PDF] trigonometry worksheet 8 4

[PDF] trilateration gps pdf

[PDF] trimble 4d monitoring

[PDF] trimethoprim

[PDF] tripomatic new york

[PDF] trivia about british culture

[PDF] trizetto payer list

[PDF] trois cent

[PDF] trophic level

[PDF] troubleshooting computer hardware problems and solutions

[PDF] troubleshooting pfaff sewing machine

[PDF] troubleshooting powerpoint narration

[PDF] trouver un bureau de poste ouvert pendant le confinement