[PDF] Tous les exercices - Electromagnétisme PCSI MPSI PTSI





Previous PDF Next PDF



Électro- magnétisme Électro- magnétisme

02‏/08‏/2019 165 QCM ET EXERCICES CORRIGÉS ... Une boucle de courant stationnaire de moment m plongée dans un champ magnétostatique appliqué uniforme Ba :.



SERIE DEXERCICES N°31 : CHAMP MAGNETOSTATIQUE

Etudier les symétries et invariances de cette répartition de courants. Champ magnétostatique. Exercice 3 : champ créé par une spire circulaire sur son axe. 1.



le-champ-magnetique-exercices-non-corriges-1.pdf

Déterminer le sens et l'intensité du courant électrique qui va annuler le champ magnétique en P. Exercice 5 : Calculer l'intensité du courant qu'il faut faire 



TD corrigés délectromagnétisme

29‏/10‏/2011 1) Déterminer le champ magnétique créé par la bobine parcourue par le courant I. 2) Quelle est l'énergie magnétique de la bobine ? En déduire la ...



Cours et Exercices dElectromagnétisme et Ondes pour les Master

Exercices corrigés. Exercice N°1. Calculez le rotationnel et la divergence de champ magnétostatique est à flux conservatif. ∯ ⃗⃗. = 0. (2.26).



POLYCOPIE DE C EXERCICES C POLYCOPIE DE COURS AVEC

Toutes ces ondes sont décrites par le même formalisme : la propagation conjointe d'un champ électrique et d'un champ magnétique. 1 LES LOIS DE L'ELECTROSTATIQUE 



TD champ EM1 2010

Exercice 16 : champ magnétique créé par un courant (vu en cours). 1°) Un corrigés de physique. Dahmane. Meral oui. 3 rappels de cours et exo corrigés.



Travaux dirigés de magnétisme

Exercice 2 : Application des règles d'orientation du champ magnétostatique. A partir des différents procédés techniques énoncés en cours (règles des trois 



CORRIG´ES DES EXERCICES DELECTROMAGN´ETISME

Retrouver les expressions des champs créés en tout point par les distributions étudiées aux exercices propriétés de symétrie du champ magnétostatique. c) Les ...



2021-2022 Physique2 Cours et exercices corrigés

Dans le quatrième chapitre nous avons abordé les principes de sources du champ magnétique à savoir les lois qui gouvernent le comportement des charges 



SERIE DEXERCICES N°31 : CHAMP MAGNETOSTATIQUE

Série d'exercices 31. 1. SERIE D'EXERCICES N°31 : CHAMP MAGNETOSTATIQUE. Distributions de courants. Exercice 1 : spire portant un courant filiforme 



le-champ-magnetique-exercices-non-corriges-1.pdf

caractéristiques du champ magnétique résultant . ???? . Exercice 2 : Deux aimants droits sont placés perpendiculairement l'un à l'autre à la même 



TD corrigés délectromagnétisme

Oct 29 2011 1) Déterminer le champ magnétique créé par la bobine parcourue par le courant I. 2) Quelle est l'énergie magnétique de la bobine ? En déduire la ...



EXERCICES DE MAGNETISME ENONCES -I +I

b) Quelle est l'expression de l'intensité du champ magnétique au centre du solénoïde ? CORRIGES. Exercice 1 a). Le spectre magnétique d'un solénoïde est ...



Magnétostatique Applications directes du cours

Exercice 1 - Cartes de champ magnétostatique. Page 2. TD17 - Magnétostatique - Correction. Exercice 2 - Conducteur torique. Lavoisier - PC.



CHAMP MAGNÉTOSTATIQUE - corrigé des exercices A

CHAMP MAGNÉTOSTATIQUE - corrigé des exercices. A. EXERCICES DE BASE. I. Bobines “façon Helmholtz”. 1.a. • La spire est symétrique par rapport aux plans 



Électro- magnétisme

Aug 2 2019 165 QCM ET EXERCICES CORRIGÉS ... 3 Équations de passage du champ magnétostatique ... 2 Champ magnétostatique créé par un dipôle.



Tous les exercices - Electromagnétisme PCSI MPSI PTSI

8 Champ magnétostatique . corrigés. Tester ses connaissances. 1 Réponses a. et c. Le cône comme le ... Savoir résoudre les exercices ») donné par :.



SERIE DEXERCICES N°32 : CIRCULATION DU CHAMP

CIRCULATION DU CHAMP MAGNETOSTATIQUE THEOREME D'AMPERE. DIPOLE MAGNETIQUE. Exercice 1 : couche plane infinie. 1. Déterminer le champ créé en un point M de 



CORRIG´ES DES EXERCICES DELECTROMAGN´ETISME

Calculs directs de champs électrostatiques créés par des 1?) Exercice III. Pour r ? R div ... propriétés de symétrie du champ magnétostatique.



SERIE D’EXERCICES N°31 : CHAMP MAGNETOSTATIQUE

Champ magnétostatique Exercice 3 : champ créé par une spire circulaire sur son axe Calculer le champ magnétostatique créé par une spire de rayon R parcourue par un courant d’intensité I en un point M de son axe (Ox) la spire étant vue sous l’angle depuis M



Université Joseph Fourier DEUG Sma – SP2-2

Dans ce cours de magnétostatique nous traiterons dans les chapitres I à III de la question suivante : comment produire un champ magnétique à partir de courants permanents ? Nous n’aborderons que partiellement (chapitre IV) le problème inverse : comment produire de l’électricité à partir d’un champ magnétique ?

| Classe | prépaPCSI

Raphaële Langet

Professeur en classes préparatoires

Tous les exercices

© Nathan,

Sommaire

1 Distributions de charges ...................................................................3

2 Champ électrostatique .....................................................................9

3 Circulation et potentiel électrostatique ......................17

4 Théorème de Gauss ............................................................................28

5 Champ électrostatique ...................................................................43

6 Mouvement des particules chargées

dans un champ et .................................................................57

7 Distributions de courants ..............................................................69

8 Champ magnétostatique ..............................................................73

9 Théorème d'Ampère .........................................................................85

10 Dipôle magnétique .............................................................................97

EB

© Nathan,

1 - Distributions de charges

3

Tester ses connaissances| CorrigŽs p. 6

1Parmi ces distributions, lesquelles ne présen-

tent pas de symétrie cylindrique ? aΦCylindre d'axe de rayon de hau- teur uniformément chargé en volume. bΦCylindre d'axe de rayon infini, uniformément chargé en surface. cΦCône d'axe de sommet O, d'angle au sommet uniformément chargé en volume. dΦCylindre d'axe de rayon R, infini, de densité de charges

2Soit un cube de centre O et d'arrête a, uni-

formément chargé en surface. Dans la liste suivante, quelles sont les symétries du cube ? aΦSymétrie par rapport à tout plan passant par O. bΦSymétrie par rapport à tout plan contenant cΦSymétrie par toute rotation autour de O. dΦSymétrie par une rotation d'angle autour de

3Compléter cette phrase : la charge volumi-

que est une grandeur : aΦquantifiée. bΦmésoscopique. cΦdiscrète. dΦmicroscopique.

4La distribution surfacique

est à symétrie : aΦsphérique. bΦquelconque. cΦcylindrique.

Savoir appliquer le cours| CorrigŽs p. 6

Donner les symétries des distributions de charges suivantes :

1Fil infini, d'axe de densité linéique de

charge uniforme

2Cylindre infini, d'axe de rayon R, uni-

formément chargé en volume.

3Sphère de centre O, de rayon R, uniformé-

ment chargée en surface.

Avant la colle

Oz,R, h, Oz,R, Oz, Oz, rR? 0 r R ln= Oz. 3 2 Oz. M xyzx 2 y 2 +,=z Oz, 0 Oz,

1 Ð Distributions de charges

© Nathan,classe prépa

s'entraîner ƒlectromagnŽtisme PCSI, MPSI, PTSI - © Nathan, Classe prŽpa 4

CorrigŽ p. 6

Carré de quatre charges

Soient quatre charges rŽparties au sommet dÕun carré : :+q: -q :-q:+q DŽterminer les plans de symŽtrie et dÕantisymŽtrie de cette distribution.

CorrigŽ p. 6

Cercle chargé

une densité linéique de charges uniforme et pour une densité linéique de char- ges uniforme Quelles sont les symétries de cette distribution ?

CorrigŽ p. 6

Droite chargée

Déterminer les invariances et symétries de la dis- tribution de charges dans les cas suivants.

1.La densitŽ linŽique de charges est uniforme :

2.La densitŽ linŽique de charges est : si

et si

CorrigŽ p. 7

Cube chargé

chargé sur deux de ses faces opposées (en et en avec des densités surfaciques de charges uniformes, mais opposées (respectivement +σ et -σ). Déterminer les symétries et invariances d'une telle distribution.

CorrigŽ p. 7

Distribution volumique

suivante :

1.Quelles sont les invariances et symŽtries dÕune

telle distribution ?

2.Calculer la charge totale de la distribution.

CorrigŽ p. 7

Modélisation d'une densité linéique

Un tube cylindrique ˆ section circulaire de rayon a est chargŽ uniformŽment avec la densitŽ volumi- que Le rayon a Žtant petit ˆ lՎchelle macrosco- pique d'étude, on modélise le tube par un fil portant une densité linéique

Exprimer en fonction de et a.

CorrigŽ p. 7

Charge totale d'une distribution

surfacique portant en sa surface une densitŽ de charges où Calculer la charge totale portée par la distribution.

CorrigŽ p. 7

Hélice chargée

suivantes : avec variant de à 1 5 min

A1, 0, 0()B0 1, 0Ð,

D0, 1, 0()C1, 0, 0Ð()

2 5 min x0 +λ,x0 3 5 min Ox() 0 0 x0λλ 0

Ð=x0.

4 5 min z a 2 z a 2 5 5 min

ρrθ?

0 r a 0 0 si si ra 0 ra 0 6 5 min 7 10min 0

1θcos+(),=θOz,OP().=

8 10min xRθ,cos=yRθ,sin=z pθ 2π min max

© Nathan,classe prépa

1 - Distributions de charges

5 Cette hŽlice porte une densitŽ linŽique de charges uniforme

1.Donner les ŽlŽments de symŽtrie dÕun cylindre

infini de même axe de même rayon R, et de densité surfacique de charge uniforme.

2.LÕhŽlice inÞnie et

possède-t-elle les mêmes invariances ?

3.QuÕen est-il de lÕhŽlice Þnie ?

CorrigŽ°pΦ°γ

Du point de vue du potentiel et du champ Žlectri- que qu'ils créent, les noyaux de certains atomes légers peuvent être modélisés par une distribution volumique de charge à l'intérieur d'une sphère de centre O et de rayon a. On dŽsigne par le vecteur position d'un point P quelconque de l'espace.

Pour la charge volumique qui repré-

sente le noyau varie en fonction de r suivant la loi : où est une constante positive.

1.Donner les symŽtries de cette distribution de

charges.

2.Exprimer la charge totale Q du noyau.

OzPC, min max 9 10min rOP,= ra,?IPPC r 0 1 r 2 a 2 0

© Nathan,classe prépa

Électromagnétisme PCSI, MPSI, PTSI - © Nathan, Classe prŽpa 6 corrigés

Tester ses connaissances

1RŽponses a. et c. Le c™ne comme le cylindre de

hauteur finie ne présentent pas l'invariance par trans- lation d'axe contenue dans la symétrie cylindri- que. Ils possèdent tous deux en revanche la symétrie de révolution d'axe (invariance par rotation).

2RŽponse d. Un plan passant par mais non

perpendiculaire aux faces du cube ne laisse pas la distribution invariante, de même qu'une rotation quelconque autour de O. Des 4 propositions, seule la dernière laisse la distribution invariante.

3RŽponse°b. Il sÕagit dÕune grandeur continue, dŽÞ-

nie à l'échelle intermédiaire mésoscopique, contenant un grand nombre d'entités microscopiques.

4RŽponse c. En coordonnŽes cylindriques,

donc l'invariance proposée se traduit par

Savoir appliquer le cours

1Une telle distribution est invariante par toute trans-

lation d'axe puisque la densité de charges est uniforme. On a aussi invariance par toute rotation d'axe On a donc une symétrie cylindrique. Tous les plans contenant ou perpendiculaires à sont des plans de symétrie de la distribution.

2Une telle distribution est invariante par toute

translation d'axe puisque la densité volumique de charges est uniforme. On a aussi invariance par toute rotation d'axe On a donc une symétrie cylindrique. Tous les plans contenant ou per- pendiculaires à sont des plans de symétrie de la distribution.

3La densitŽ de charges est uniforme, la distribution

de charges a donc les symétries de la surface qui la porte. On a invariance par toute rotation autour de tout axe passant par O. Il y a symétrie sphérique.

Tout plan contenant O est un plan de symŽtrie.

S'entraîner

1Le plan contenant les quatre charges est

plan de symétrie de la distribution, puisque chaque point est sa propre image. Une symétrie par rapport au plan échange les points et et laisse les points et invariants. Elle laisse donc invariante la dis- tribution. Le plan est plan de symétrie. Il en va de même pour une symétrie par rapport au plan qui échange et en laissant et invariants.

Le plan d'équation échange les points

et d'une part et les points et d'autre part. Il s'agit donc d'un plan d'antisymétrie. Il en va de même pour le plan d'équation qui

échange les points et d'une part et les

points et d'autre part.

2Le plan contient le cercle chargŽ. Une

quotesdbs_dbs4.pdfusesText_8
[PDF] champion de france cyclisme route 2019

[PDF] championnat france cyclisme route 2019

[PDF] champions league history

[PDF] change font latex times new roman

[PDF] change google language on iphone

[PDF] change hotmail password on android tablet

[PDF] change of base formula calculator

[PDF] change office 365 password on iphone

[PDF] change password outlook app iphone 6

[PDF] chanson jacques dutronc paris séveille

[PDF] chanson pour apprendre les jours de la semaine

[PDF] chapitre 16 extraction identification et synthèse d'espèces chimiques

[PDF] chapter 2 class 10 math solution

[PDF] chapter 8 factoring and quadratic equations answers

[PDF] chapter 8 test factoring polynomials answers