[PDF] REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS





Previous PDF Next PDF



VECTEURS DROITES ET PLANS DE LESPACE

La projection orthogonale de A sur P est le point H appartenant à P tel que la droite. (AH) soit orthogonale au plan P. Propriété : Le projeté orthogonal d'un 



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

1) Démontrer que la droite ( ) et le plan P sont sécants. 2) Déterminer leur point d'intersection. 1) Un vecteur normal de P est 7? ^. 2.



VECTEURS ET DROITES

Définition : D est une droite du plan. On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D.



PRODUIT SCALAIRE DANS LESPACE

les vecteurs ? ? et '? sont deux à deux orthogonaux



PRODUIT SCALAIRE DANS LESPACE

Soit une droite de vecteur directeur orthogonale à deux droites et de. P sécantes et de vecteurs directeurs respectifs et . Alors et sont non colinéaires et 



1) Droites orthogonales 2) Orthogonalité dune droite et dun plan

Definition : - deux droites D et D' de vecteur directeurs u et v non nul sont orthogonales si les vecteursu et v sont orthogonaux.



Méthodes de géométrie dans lespace Déterminer une équation

Si une droite est orthogonale à un plan son vecteur directeur est le vecteur normal du plan . Ici



1 EQUATIONS DE PLANS DE DROITES

http://www.pierrelux.net/documents/cours/1es/espace_equations.pdf



GÉOMÉTRIE REPÉRÉE

Donc les vecteurs 6? et 6? sont orthogonaux. Méthode : Déterminer une équation de droite connaissant un point et un vecteur normal. Vidéo https://youtu.be 



Algèbre Linéaire

5 Transformations orthogonales et matrices symétriques L'espace engendré par un vecteur u est appelé droite vectorielle engendré par u et Vect(u) = {?u ...



Orthogonalité et distances dans l’espace - Lumni

Un vecteur normal de la droite est M2?3 2 ?3 5 Un vecteur directeur de la droite est : 12?3 3 2 5 On vérifie que M2? et 12? sont orthogonaux : 12? M2?=2×3+(?3)×2=0 Méthode : Déterminer une équation de droite connaissant un point et un vecteur normal Vidéo https://youtu be/oR5QoWCiDIo On considère la droite A passant



Produit scalaire (partie 2) - univ-toulousefr

Un vecteur directeur d’une droite (d) est un vecteur dont la direction est pa-rallèle à celle de (d) Remarque En particulier siA et B sont des points appartenant à la droite (d)alorslevecteur ??? AB est un vecteur directeur de (d) Rappelons également le fait suivant : si ?? u est un vecteur directeur de (d)alorsk?? u



I- Vecteur normal et équation de droite - ac-noumeanc

est normal à un droite (d) signifie que n! est orthogonal à un vecteur directeur de la droite (d) Conséquence : la droite (d) passant par A et de vecteur normal n! est l’ensemble des points M du plan tels que AM!!!!" n " =0 Propriété : Une droite (d) d’équation cartésienne ax + by + c = 0 admet le vecteur nul n! (a; b) pour vecteur



1) Droites orthogonales - MATHIX

Exposé 47 : Orthogonalité dans l’espace affine euclidien : droites orthogonales droite orthogonale à un plan plan perpendiculaires application Pre requis : - produit scalaire - vecteur directeur d’une droite vecteur normal à un plan Cadre : E espace affine euclidien d’esp Vectoriel associé E 1) Droites orthogonales



Searches related to vecteur orthogonal à une droite PDF

- Si une droite est orthogonale à toute droite d'un plan P alors elle est en particulier orthogonale à deux droites sécantes de P - Démontrons la réciproque : Soit une droite (?) de vecteur directeur ?n orthogonale à deux droites (d1) et (d2) de P sécantes et de vecteurs directeurs respectifs u?1 et u?2

Comment caractériser l’orthogonalité de deux vecteurs ?

caractériser l’orthogonalité de deux vecteurs de l’espace par la nullité de leur produit scalaire. Le produit scalaire permet aussi de caractériser l’orthogonalité de deux vecteurs et de définir les notions de droites orthogonales de l’espace, de droite orthogonale à un plan de l’espace et de projeté orthogonal d’un point sur un plan.

Quel est le vecteur de la droite?

La droite (D) est dirigée par le vecteur ??u(2,?3,?1) et la droite (D! ) est dirigée par le vecteur ??u!

Comment savoir si un vecteur est orthogonal ?

On dit que F F et G G sont orthogonaux pour ? ? (que l'on note F ?G F ? G) si et seulement si tout vecteur de F F est orthogonal à chaque vecteur de G G, c'est à dire que : Déterminer l'ensemble des vecteurs de R3 R 3 orthogonaux au vecteur e1+e2 +e3 e 1 + e 2 + e 3 pour le produit scalaire canonique.

Est-ce que les vecteurs sont orthogonaux?

Ex 1 ABCD est un losange et de centre o 1)construire le point M le milieu [AB]et N le milieu du [BC]. 2) Construire le point E le symetrique du point o pa... Maths 1ere les vecteurs Pouvez vous me dire si mes résultats sont corrects ? merci 1. Oui les vecteurs u et v sont bien orthogonaux 2. Non le résultat est...

1

REPRÉSENTATIONS PARAMÉTRIQUES

ET ÉQUATIONS CARTÉSIENNES

Le cours en vidéo : https://youtu.be/naOM6YG6DJc Partie 1 : Représentation paramétrique d'une droite Propriété : L'espace est muni d'un repère !;⃗,⃗, Soit une droite passant par un point et de vecteur directeur ⃗

On a :

∈⟺ Il existe un réel tel que Ce système s'appelle une représentation paramétrique de la droite .

Démonstration :

∈⟺ ⃗ et sont colinéaires ⟺Il existe un réel tel que

Exemple :

La droite passant par le point

1 -2 3 et de vecteur directeur ⃗ 4 5 -3 a pour représentation paramétrique : =1+4 =-2+5 =3-3 Méthode : Utiliser la représentation paramétrique d'une droite

Vidéo https://youtu.be/smCUbzJs9xo

Soit les points

2 3 -1 et 1 -3 2

Déterminer les coordonnées du point d'intersection de la droite () avec le plan de repère

2

Correction

- On commence par déterminer une représentation paramétrique de la droite () : Un vecteur directeur de () est : 1-2 -3-3 2- -1 -1 -6 3 La droite () passe par le point 2 3 -1 Une représentation paramétrique de () est : =2- =3-6 =-1+3 - Soit le point d'intersection de la droite () avec le plan de repère Alors =0 car appartient au plan de repère

Donc -1+3=0 soit =

Et donc :

=2- 1 3 5 3 =3-6× 1 3 =1 =0

Le point a donc pour coordonnées Q

5 3 1 0 R.

Partie 2 : Équation cartésienne d'un plan

Propriété : L'espace est muni d'un repère orthonormé !;⃗,⃗,

Un plan de vecteur normal ⃗ non nul admet une équation de la forme +++=0, avec ∈ℝ.

Réciproquement, si , et sont non tous nuls, l'ensemble des points

tels que +++=0, avec ∈ℝ, est un plan. Cette équation s'appelle équation cartésienne du plan .

Démonstration au programme :

Vidéo https://youtu.be/GKsHtrImI_o

- Soit un point de . et ⃗ sont orthogonaux .⃗=0 =0 3 =0 ⟺+++=0 avec =-

- Réciproquement, supposons par exemple que ≠0 (, et sont non tous nuls).

On note E l'ensemble des points

vérifiant l'équation +++=0

Alors le point Q

0 0 R vérifie l'équation +++=0. Et donc ∈E.

Soit un vecteur ⃗

. Pour tout point , on a : .⃗=V+

W+

-0 -0

E est donc l'ensemble des points

tels que .⃗=0. Donc l'ensemble E est le plan passant par et de vecteur normal ⃗.

Exemple : Le plan d'équation cartésienne -+5+1=0 a pour vecteur normal ⃗

1 -1 5 Méthode : Déterminer une équation cartésienne de plan

Vidéo https://youtu.be/s4xqI6IPQBY

Dans un repère orthonormé, déterminer une équation cartésienne du plan passant par le

point -1 2 1 et de vecteur normal ⃗ 3 -3 1

Correction

Une équation cartésienne de est de la forme 3-3++=0. Le point appartient à donc ses coordonnées vérifient l'équation : 3× -1 -3×2+1+=0 donc =8. Une équation cartésienne de est donc : 3-3++8=0. Propriété : Deux plans sont perpendiculaires lorsqu'un vecteur normal de l'un est orthogonal

à un vecteur normal de l'autre.

4 Méthode : Démontrer que deux plans sont perpendiculaires

Vidéo https://youtu.be/okvo1SUtHUc

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

2+4+4-3=0 et 2-5+4-1=0.

Démontrer que les plans et ′ sont perpendiculaires.

Correction

Les plans et ′sont perpendiculaires si et seulement si un vecteur normal de l'un est

orthogonal à un vecteur normal de l'autre. Un vecteur normal de est ⃗ 2 4 4 et un vecteur normal de ′est ′ 2 -5 4 =2×2+4× -5 +4×4=0

Les vecteurs ⃗ et ′

sont orthogonaux donc les plans et ′sont perpendiculaires.

Partie 3 : Applications

Méthode : Déterminer l'intersection d'une droite et d'un plan

Vidéo https://youtu.be/BYBMauyizhE

Dans un repère orthonormé, le plan a pour équation 2-+3-2=0.

Soit

1 2 -3 et -1 2 0 a) Démontrer que la droite () et le plan sont sécants. b) Déterminer leur point d'intersection.

Correction

a) Un vecteur normal de est ⃗ 2 -1 3 () et sont sécants si ⃗ et ne sont pas orthogonaux.

On a :

-2 0 3

Comme :

.⃗=-2×2+3×3≠0, on conclut que () et le plan ne sont pas

parallèles et donc sont sécants. b) Une représentation paramétrique de la droite () est : =1-2 =2 =-3+3 5

Le point

, intersection de () et de , vérifie donc le système suivant : Z =1-2 =2 =-3+3

2-+3-2=0

On a donc : 2

1-2

-2+3 -3+3 -2=0

5-11=0 soit =

D'où :

=1-2× 11 5 17 5 =2 =-3+3× 11 5 18 5 Ainsi la droite () et le plan sont sécants en 17 5 2 18 5 Méthode : Déterminer les coordonnées du projeté orthogonal d'un point sur une droite

Vidéo https://youtu.be/RoacrySlUAU

Dans un repère orthonormé, on donne les points 1 0 2 -1 2 1 et 0 1 -2

Déterminer les coordonnées du projeté orthogonal du point sur la droite ().

Correction

On appelle le projeté orthogonal du point sur la droite ().

On a :

-2 2 -1 Une représentation paramétrique de () est : =1-2 =2 =2-

Le point appartient à la droite () donc ses coordonnées vérifient les équations du

système paramétrique de ().

On a ainsi :

1-2

2

2-

et donc

1-2

2-1

2-+2

1-2

2-1

4-

Or,

et sont othogonaux, donc : =0

1-2

-2

2-1

×2+

4-

-1 =0 -2+4+4-2-4+=0

9-8=0

6 8 9

Le point , projeté orthogonal du point sur la droite (), a donc pour coordonnées :

1-2×

8 9 2× 8 9 2- 8 9 7 9 16 9 10 9 Méthode : Déterminer l'intersection de deux plans - NON EXIGIBLE -

Vidéo https://youtu.be/4dkZ0OQQwaQ

Dans un repère orthonormé, les plans et ′ ont pour équations respectives :

-+2+-5=0 et 2-+3-1=0.

1) Démontrer que les plans ′ sont sécants.

2) Déterminer une représentation paramétrique de leur droite d'intersection .

Correction

1) et′ sont sécants si leurs vecteurs normaux ne sont pas colinéaires.

Un vecteur normal de est ⃗ -1 2 1 et un vecteur normal de ′est ′ 2 -1 3 Les coordonnées des deux vecteurs ne sont pas proportionnelles donc les vecteurs ne sont pas colinéaires.

2) Le point

de , intersection de et de ′, vérifie donc le système suivant : i -+2+-5=0

2-+3-1=0

On choisit par exemple comme paramètre et on pose =. On a alors : -+2+-5=0

2-+3-1=0

=-2++5 -+3=1-2 =-2++5 -+3 -2++5 =1-2 =-2++5 --6+3+15=1-2 =-2++5 -7=-14-5 =2+ 5 7 =-2 V 2+ 5 7 W ++5 =2+ 5 7 =1- 3 7 Ce dernier système est une représentation paramétrique de , avec ∈ℝ. 7 RÉSUMÉ : Pour démontrer des positions relatives droite de vecteur directeur ⃗. plan de vecteur normal ⃗. et sont... parallèles ⃗.⃗=0 sécants orthogonaux ⃗ et ⃗ colinéaires plan de vecteur normal plan de vecteur normal et sont... parallèles ⃗ et ⃗ colinéaires sécants ⃗ et ⃗ non colinéaires perpendiculaires ⃗=0quotesdbs_dbs35.pdfusesText_40
[PDF] vecteurs orthogonaux exercices

[PDF] rapport jury agregation externe eps 2016

[PDF] agregation maths sujet

[PDF] vecteurs orthogonaux definition

[PDF] rapport jury agregation externe eps 2017

[PDF] siac2

[PDF] prouver que deux droites sont perpendiculaires dans un repère orthonormé

[PDF] sujet agregation espagnol 2016

[PDF] rapport jury agrégation interne espagnol 2017

[PDF] figure hybride définition

[PDF] rapport jury agrégation interne espagnol 2011

[PDF] l'attachement définition

[PDF] caregiving définition

[PDF] rapport jury capes interne anglais 2015

[PDF] définition attachement bowlby