[PDF] VECTEURS ET REPÉRAGE Un repère est dit





Previous PDF Next PDF



Un quadrilatère ABCD est un parallélogramme si et seulement si

Nov 6 2017 Que représente le point G pour le triangle ABC ? EXERCICE 23. Dans le plan muni d'un repère orthonormé (O;?



ABCD est un parallélogramme donc ?= ? On note ; les

mathsbdp.fr. Vecteurs translation. Ex1. Dans un repère orthonormé (O I



VECTEURS ET REPÉRAGE

Un repère est dit orthonormé s'il est orthogonal et si ?et ? sont Déterminer les coordonnées du point tel que soit un parallélogramme.



Calcul vectoriel – Produit scalaire

Règle du parallélogramme : AB + AC = AD avec D tel que ABDC soit un paral- Dans le plan muni d'un repère orthonormé (O I



Distance de deux points dans un repère orthonormal

Si le parallélogramme ABCD a un angle droit ABCD est un rectangle. Pour démontrer que l'angle  est droit



calcul de laire dun parallélogramme en fonction des coordonnées

Il est possible de calculer l'aire d'un parallé- logramme en le plaçant dans un repère et en n'utilisant que les coordonnées de deux de ses sommets.



Outils de démonstration

Si les côtés opposés d'un quadrilatère sont de même longueurs alors c'est un parallélogramme. Si les diagonales d'un quadrilatère ont le même milieu alors ce.



DÉTERMINANTS DANS LE PLAN ET DANS LESPACE

Fig. 1. Parallélogramme engendré par deux vecteurs. déterminant et aire ne persiste tel quel que dans les bases orthonormées. Exemple 1.2.



LES VECTEURS

Le quadrilatère non croisé ABDC est donc un parallélogramme Un repère est dit orthonormé s'il est orthogonal et si ? et ? sont de norme 1.



Démontrer quun point est le milieu dun segment Démontrer que

sont des parallélogrammes particuliers.) ABCD est un parallélogramme donc ses diagonales. [AC] et [BD] se coupent en leur milieu.

1 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

VECTEURS ET REPÉRAGE

Tout le cours en vidéo : https://youtu.be/9OB3hct6gak

Partie 1 : Repère du plan

Trois points du plan non alignés O, I et J forment un repère, que l'on peut noter (O, I, J). L'origine O et les unités OI et OJ permettent de graduer les axes (OI) et (OJ).

Si on pose í µâƒ— = í µí µ

et í µâƒ— = í µí µ , alors ce repère se note également (O, í µâƒ— ,

Définitions :

- On appelle repère du plan tout triplet (O, í µâƒ—, í µâƒ—) où O est un point et í µâƒ— et í µâƒ— sont deux vecteurs non

colinéaires.

- Un repère est dit orthogonal si í µâƒ— et í µâƒ— ont des directions perpendiculaires.

- Un repère est dit orthonormé s'il est orthogonal et si í µâƒ— et í µâƒ— sont de norme 1.

TP info : Lectures de coordonnées :

Partie 2 : Coordonnées d'un vecteur

Exemple :

Vidéo https://youtu.be/8PyiMHtp1fE

Pour aller de A vers B, on parcourt un chemin :

3 unités vers la droite et 2 unités vers le haut.

Ainsi í µí µ

=3í µâƒ—+2í µâƒ—.

Les coordonnées de í µí µ

se notent . 3 2 / ou (3;2). On préfèrera la première notation.

í µâƒ— O í µâƒ— Repère orthogonal í µâƒ— O í µâƒ— Repère orthonormé í µâƒ— O í µâƒ— Repère quelconque í µâƒ— í µâƒ— I J O

2 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Déterminer les coordonnées d'un vecteur par lecture graphique

Vidéo https://youtu.be/8PyiMHtp1fE

a) Dans le repère (O, í µâƒ—, í µâƒ—), placer les points í µ. -1 -2 -2 3 1 -4 4 -2 b) Déterminer les coordonnées des vecteurs í µí µ et í µí µ par lecture graphique.

Correction

On a :

=-í µâƒ—+5í µâƒ— donc í µí µ a pour coordonnées . -1 5 =3í µâƒ—+2í µâƒ— donc í µí µ a pour coordonnées . 3 2

Propriété :

Soit deux points í µ.

/ et í µ.

Le vecteur í µí µ

a pour coordonnées . Méthode : Déterminer les coordonnées d'un vecteur par calcul

Vidéo https://youtu.be/wnNzmod2tMM

Calculer les coordonnées des vecteurs í µí µ et í µí µ , tels que : 2 1 5 3 -1 -2 -2 3 1 -4 / et í µ. 4 -2

Correction

5-2 3-1 3 2 -2- -1 3- -2 A = . -1 5 4-1 -2- -4 A = . 3 2

3 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Propriétés :

Soit deux vecteurs 𝐼⃗.

/ et í µâƒ—í±¦

A, et un réel í µ.

On a :

A í µí µí°¼âƒ— í±¦

A -𝐼⃗.

𝐼⃗ et í µâƒ— sont égaux lorsque í µ=í µâ€² et í µ=í µâ€². Méthode : Appliquer les formules sur les coordonnées de vecteurs

Vidéo https://youtu.be/rC3xJNCuzkw

En prenant les données de la méthode précédente, calculer les coordonnées des vecteurs 3í µí µ

4í µí µ

et 3í µí µ -4í µí µ

Correction

On a : í µí µ

3 2 / et í µí µ -1 5

3í µí µ

3×3

3×2

9 6 /, 4í µí µ 4× -1

4×5

-4 20

3í µí µ

-4í µí µ 9- -4 6-20 13 -14 Méthode : Calculer les coordonnées d'un point défini par une égalité vectorielle

Vidéo https://youtu.be/eQsMZTcniuY

Soit les points í µ.

1 2 -4 3 1 -2

Déterminer les coordonnées du point í µ tel que í µí µí µí µ soit un parallélogramme.

Correction

í µí µí µí µ est un parallélogramme si et seulement si í µí µ

On pose .

/ les coordonnées du point í µ.

On a alors : í µí µ

-4-1 3-2 -5 1 / et í µí µ

1-í µ

-2-í µ A

Donc : 1-í µ

=-5 et -2-í µ =1 =-5-1 et -í µ =1+2 =6 et í µ =-3.

Les coordonnées du point í µ sont donc .

6 -3

4 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Partie 3 : Colinéarité de deux vecteurs

1. Critère de colinéarité

Propriété : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que : í µí µ'-í µí µ'=0.

Remarque : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que les coordonnées des deux

vecteurs sont proportionnelles soit : í µí µ'=í µí µ'.

Démonstration au programme :

Vidéo https://youtu.be/VKMrzaiPtw4

• Si l'un des vecteurs est nul alors l'équivalence est évidente. • Supposons maintenant que les vecteurs 𝐼⃗ et í µâƒ— soient non nuls.

Dire que les vecteurs 𝐼⃗.

/ et í µâƒ—í±¦ A sont colinéaires équivaut à dire qu'il existe un nombre réel í µ tel que 𝐼⃗ =í µí µâƒ—.

Les coordonnées des vecteurs 𝐼⃗ et í µâƒ— sont donc proportionnelles et le tableau ci-dessous est un

tableau de proportionnalité : Donc : í µí µ'=í µí µ' soit encore í µí µ'-í µí µ'=0. Réciproquement, si í µí µ'-í µí µ'=0. Le vecteur í µâƒ— étant non nul, l'une de ses coordonnées est non nulle. Supposons que í µ'≠0. Posons alors í µ= . L'égalité í µí µ'-í µí µ'=0 s'écrit : í µí µ'=í µí µ'.

Soit : í µ =

Comme on a déjà í µ = í µí µâ€², on en déduit que 𝐼⃗ =í µí µâƒ—.

Méthode : Vérifier si deux vecteurs sont colinéaires

Vidéo https://youtu.be/eX-_639Pfw8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. 4 -7 / et í µâƒ—. -12 21
/ b) 𝐼⃗. 5 -2 / et í µâƒ—. 15 -7

Correction

a) í µí µ'-í µí µ'=4×21- -7 -12 =84-84=0.

Le critère de colinéarité est vérifié donc les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires.

On peut également observer directement que í µâƒ—=-3𝐼⃗.

5 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr b) í µí µ'-í µí µ'=5× -7 -2 15 =-35+30=-5≠0.

Le critère de colinéarité n'est pas vérifié donc les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

2. Déterminant de deux vecteurs

Définition : Soit deux vecteurs 𝐼⃗ . / et í µâƒ— í±¦ A.

Le nombre í µí µ'-í µí µ' est appelé déterminant des vecteurs 𝐼⃗ et í µâƒ—.

On note : í µí µí µ

Propriété : Dire que 𝐼⃗ et í µâƒ— sont colinéaires revient à dire que í µí µí µ

=0. Méthode : Vérifier si deux vecteurs sont colinéaires à l'aide du déterminant

Vidéo https://youtu.be/MeHOuwy81-8

Dans chaque cas, vérifier si les vecteurs 𝐼⃗ et í µâƒ— sont colinéaires. a) 𝐼⃗. -6 10 / et í µâƒ—. 9 -15 / b) 𝐼⃗. 4 9 / et í µâƒ—. 11 23

Correction

a) í µí µí µ =R -69 10-15 R= -6 -15 -10×9=90-90=0 Les vecteurs 𝐼⃗ et í µâƒ— sont donc colinéaires. b) í µí µí µ =R 411
923

R=4×23-9×11=92-99=-7≠0

Les vecteurs 𝐼⃗ et í µâƒ— ne sont donc pas colinéaires.

3. Applications

Propriétés :

1) Dire que les droites (í µí µ) et (í µí µ) sont parallèles revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

2) Dire que les points í µ, í µ et í µ sont alignés revient à dire que les vecteurs í µí µ

et í µí µ sont colinéaires.

Méthode : Appliquer la colinéarité

Vidéo https://youtu.be/hp8v6YAQQRI

Vidéo https://youtu.be/dZ81uKVDGpE

6 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

On considère les points í µ.

-1 1 3 2 -2 -3 6 -1 / et í µ. 5 0 a) Démontrer que les droites (í µí µ) et (í µí µ) sont parallèles. b) Démontrer que les points í µ, í µ et í µ sont alignés.

Correction

a) í µí µ 3- -1 2-1 4 1 / et í µí µ 6- -2 -1- -3 A = . 8 2 í µí µí µSí µí µ T=R 48
12

R=4×2-8×1=8-8=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les droites (í µí µ) et (í µí µ) sont parallèles.

Remarque :

On aurait pu également remarquer que les coordonnées de í µí µ et í µí µ sont proportionnelles pour en déduire que les vecteurs í µí µ et í µí µ sont colinéaires. b) í µí µ 3-5 2-0 -2 2 / et í µí µ 6-5 -1-0 1 -1 í µí µí µSí µí µ T=R -21 2-1

R=-2×

-1 -2×1=0

Les vecteurs í µí µ

et í µí µ sont colinéaires. Donc les points í µ, í µ et í µ sont alignés.

Partie 4 : Coordonnées du milieu d'un segment

Propriété : Soit deux points í µ.

/ et í µ. Le milieu í µdu segment [í µí µ] a pour coordonnées : X Y

Démonstration :

Considérons le parallélogramme construit à partir de í µ, í µ et í µ.

Soit í µ son centre.

Alors í µí µ

(ou í µ) a donc les mêmes coordonnées que celles du vecteur ) soit : Z [=X Y.

B O M A

7 sur 7

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Méthode : Calculer les coordonnées d'un milieu

Vidéo https://youtu.be/YTQCtSvxAmM

On considère les points í µ.

2 3 -2 1 / et í µ. 3 -1

Calculer les coordonnées de í µ, í µet í µmilieux respectifs de [í µí µ], [í µí µ] et [í µí µ].

Correction

2+ -2 2 3+1 2 _=. 0 2 2+3 2 3+ -1 2 _=. 2,5 1 -2+3 2 1+ -1 2 _=. 0,5 0 Partie 5 : Distance dans un repère orthonormé

Propriété : Soit deux points í µ.

/ et í µ. / dans un repère orthonormé : La distance í µí µ (ou la norme de í µí µ ) est : í µí µ= ` Remarque : Cette propriété est une conséquence du théorème de Pythagore. Méthode : Calculer une distance dans un repère orthonormé

Vidéo https://youtu.be/pP8ebg8W9o8

Soit deux points í µ.

3 2 / et í µ. 2 -2 / dans un repère orthonormé.

Calculer la distance í µí µ.

Correction

La distance í µí µ (ou norme du vecteur í µí µ ) est égale à : 2-3 -2-2 -1 -4 1+16 17

Hors du cadre de la classe, aucune reproduction, même partielle, autres que celles prévues à l'article L 122-5 du code de la propriété intellectuelle, ne peut être faite de ce site sans l'autorisation expresse de l'auteur. www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs46.pdfusesText_46
[PDF] Le reproduction sexuée des êtres vivants

[PDF] le réseau alimentaire

[PDF] Le réseau informatique

[PDF] Le réseau Marco Polo et mouvement Combat

[PDF] le reseau sanguin

[PDF] Le réservoir ( Sections planes de solides )

[PDF] Le Résonnement Déductif

[PDF] Le Résonnement Déductif URGENT !!

[PDF] le respect ce1

[PDF] le respect cm2

[PDF] le respect du règlement du l'etablissement

[PDF] Le respect et la communication

[PDF] le respect expliqué aux élèves

[PDF] Le restaurant de Norbert

[PDF] le reste ? faire