[PDF] Loi normale - Assistance scolaire personnalisée et





Previous PDF Next PDF



CALCUL INTEGRAL 1. Aire sous une courbe

Exemples : i. L'aire du rectangle ABCD ci-dessus est de 2 unités d'aires. OI = 2 cm et OJ = 3 cm donc l'aire de ABCD est. 2 2 3 = 12 cm2.



La notion dintégrale permet de calculer laire sous la courbe dune

Alors l'aire du rectangle OIKJ est appelée unité d'aire et elle est notée . . Définition : Soit une fonction continue et positive sur l'intervalle [ ; ] 



INTÉGRATION (Partie 1)

1) Unité d'aire d'aire en unités de mesure (le cm2 par exemple). ... Sur un sous-intervalle [ ; + ] l'aire sous la courbe est comprise entre ...



Le résumé 3e partie

1 et 089 pour le RSB. Le calcul de l'aire sous la courbe (ASC) ROC a donné : 1



CALCUL INTÉGRAL (Partie 1)

1) Unité d'aire d'aire en unités de mesure (le cm2 par exemple). ... Sur un sous-intervalle [ ; + ] l'aire sous la courbe est comprise entre ...



Calcul intégral

Remarque : La fonction ? représente en unités d'aire



INTEGRATION (Partie 1)

rectangle "unité" qui a pour aire 1 unité d'aire. On écrit 1 u.a. l'aire sous la courbe est comprise entre l'aire de deux rectangles :.



Calcul intégral 1 Intégrale et aire

On appelle unité d'aire (notée en abrégé u.a) l'unité de mesures des aires telle Sn est alors l'aire sous la courbe de sn : c'est la somme des aires des ...





I. Signal périodique

La fréquence correspond au nombre de périodes par unité de temps : Sur une période l'aire sous la courbe est nulle. (l'aire positive compensant ...



CALCUL INTÉGRAL - maths et tiques

l’équation de la courbe pour calculer l’aire sous la courbe c’est à dire du « bord » de la surface à la surface entière (intégrale) Au milieu du XIXe siècle les sciences sociales reprennent le mot pour exprimer l’idée qu’une personne s’intègre à un groupe Partie 1 : Intégrale et aire 1) Unité d'aire



Loi normale - Assistance scolaire personnalisée et

l’équation de la courbe pour calculer l’aire sous la courbe c’est à dire du « bord » de la surface à la surface entière (intégrale) Au milieu du XIXe siècle les sciences sociales reprennent le mot pour exprimer l’idée qu’une personne s’intègre à un groupe Partie 1 : Intégrale et aire 1) Unité d'aire



CALCULS D'AIRES INTEGRALES PRIMITIVES 1°) Intégrale d'une

est un rectangle on appelle unité d'aire et on note u a l'aire du rectangle OIKJ Prop 1 et déf 1: Si f est continue et positive sur [a ; b] on admet que le domaine E situé sous la courbe (entre la courbe l'axe des abscisses les droites d'équations x = a et x = b) admet une aire



Chapitre 12 - University of Paris-Est Marne-la-Vallée

sa courbe représentative dans un repère orthogonal du plan - La partie du plan située entre l’axe des abscisses la courbe ????et les droites d’équations = et = admet une aire - On appelle intégrale de et de la fonction la mesure de l’aire de cette partie en unité d’aire



Searches related to aire sous la courbe unité PDF

On veut déterminer l’aire de la surface hachurée sous la courbe a Donner une estimation (ou un encadrement) de cette aire b En utilisant ce qui a été fait précédemment proposez une méthode qui permette de calculer la valeur exacte de cette aire a Calculer l’aire du trapèze hachuré b Chercher dans votre tableau de

Comment calculer l'aire d'une courbe?

Si la variable aléatoire X suit la loi normale centrée réduite alors mesure l'aire de la surface comprise entre la courbe, l'axe des abscisses et la droite verticale d'équation x = a.

Comment écrire l’aire sous une courbe ?

Vous pouvez écrire l’aire sous une courbe comme une intégrale définie (où l’intégrale est une somme infinie de morceaux infiniment petits – tout comme la notation de sommation). Maintenant pour les trucs fous. FOLLE. Il s’avère que l’aire est l’anti-dérivée de f (x). Si vous vous arrêtez un instant, vous verrez que c’est sauvage. Follement fou.

Comment calculer la progression des aires sous la courbe?

Il s’aperçut que les aires sous la courbe restaient constantes lorsque la progression de l’abscisse était géométrique (1, 2, 4, 8, 16,…). Si on s’intéressait à l’aire depuis l’abscisse 1, la progression des aires était arithmétique : Aire (a x b)= Aire de (a) + aire (b). Il avait aussi Aire (1) = 0.

Comment calculer les aires sous la courbe de l’hyperbole?

Georges Saint-Vincent, en 1650, s’intéressa à l’aire sous la courbe de l’hyperbole : y = 1/x. Il s’aperçut que les aires sous la courbe restaient constantes lorsque la progression de l’abscisse était géométrique (1, 2, 4, 8, 16,…).

1

INTÉGRATION - Chapitre 1/2

Tout le cours en vidéo : https://youtu.be/pFKzXZrMVxs En 1696, Jacques Bernoulli reprend le mot latin " integer », déjà utilisé au XIVe siècle, pour désigner le calcul intégral. A cette époque, on partait de l'équation de la courbe pour calculer l'aire sous la courbe, c'est à dire du " bord » de la surface à la surface entière (intégrale). Au milieu du XIXe siècle, les sciences sociales reprennent le mot pour exprimer l'idée qu'une personne s'intègre à un groupe.

Partie 1 : Intégrale et aire

1) Unité d'aire

Dans le repère (O, I, J), le rectangle

rouge a comme dimension 1 sur 1.

Il s'agit du rectangle "unité" qui a pour

aire 1 unité d'aire. On écrit 1 u.a.

L'aire du rectangle vert est égale à 8

fois l'aire du rectangle rouge. L'aire du rectangle vert est donc égale à 8 u.a. Lorsque les longueurs unitaires sont connues, il est possible de convertir les unités d'aire en unités de mesure (le cm 2 par exemple).

2) Définition

Définition : Soit une fonction continue et positive sur un intervalle [;].

On appelle intégrale de sur [;] l'aire, exprimée en u.a., de la surface délimitée par la

courbe représentative de la fonction , l'axe des abscisses et les droites d'équations = et =.

Intégrale de sur [;]

2

3) Notation

L'intégrale de la fonction sur [;] se note : Et on lit " intégrale de à de

Remarques :

- et sont appelés les bornes d'intégration. - est la variable d'intégration. Elle peut être remplacée par toute autre lettre qui n'intervient pas par ailleurs.

Ainsi on peut écrire :

"" ou "" nous permet de reconnaître la variable d'intégration. Cette notation est due au mathématicien allemand Gottfried Wilhelm von Leibniz (1646 ; 1716). Ce symbole fait penser à un "S" allongé et s'explique par le fait que l'intégral est égal à une aire calculée comme somme infinie d'autres aires. Plus tard, un second mathématicien allemand, Bernhard Riemann (1826 ;

1866) établit une théorie aboutie du calcul intégral.

Exemple :

L'aire de la surface délimitée par la courbe représentative de la fonction définie par

+1, l'axe des abscisses et les droites d'équations =-2 et =1 est l'intégrale de la fonction sur l'intervalle [-2;1] et se note : +1 3 Méthode : Déterminer une intégrale par calculs d'aire (1)

Vidéo https://youtu.be/jkxNKkmEXZA

a) Tracer la représentation graphique de la fonction définie par 1 2 +3 dans un repère orthonormé. b) Calculer

Correction

a) b) Calculer revient à calculer l'aire de la surface délimitée par la courbe

représentative de la fonction , l'axe des abscisses et les droites d'équations =-1 et

=5.

Donc par dénombrement, on obtient :

4) Encadrement de l'intégrale d'une fonction monotone et positive

Soit une fonction continue, positive et

monotone sur un intervalle [;]. On partage l'intervalle [;] en sous- intervalles de même amplitude =

Sur un sous-intervalle

, l'aire sous la courbe est comprise entre l'aire de deux rectangles : - l'un de dimension et () qui a pour aire : - l'autre de dimension et (+) qui a pour aire ×(+). 4

Sur l'intervalle [;], l'aire sous la courbe est comprise entre la somme des rectangles

"inférieurs" et la somme des rectangles "supérieurs". Voici un algorithme écrit en langage naturel permettant d'obtenir un tel encadrement :

Exemple :

Avec Python, on programme cet algorithme pour la

fonction ()= sur l'intervalle [1 ; 2]. On exécute plusieurs fois le programme pour obtenir un encadrement de l'intégrale de la fonction carré sur [1 ; 2]. En augmentant le nombre de sous-intervalles, la précision du calcul s'améliore car l'encadrement formé de rectangles inférieurs et supérieurs se resserre autour de la courbe.

On en déduit que : 2,31<

<2,35 Il est possible de vérifier avec la calculatrice :

Langage naturel

Définir fonction rectangle(a, b, n)

L ← (b-a)/n

x ← a m ← 0 p ← 0

Pour i allant de 0 à n-1

m ← m+Lxf(x) x ← x+L p ← p+Lxf(x)

FinPour

Afficher m et p

5

Calculer une intégrale avec la calculatrice :

Vidéo TI https://youtu.be/0Y3VT73yvVY

Vidéo Casio https://youtu.be/hHxmizmbY_k

Vidéo HP https://youtu.be/4Uu5tQGjbwo

5) Extension aux fonctions de signe quelconque

Propriété : Soit une fonction continue et NÉGATIVE sur un intervalle [;].

L'aire, exprimée en u.a., de la surface délimitée par : - la courbe représentative de la fonction , - l'axe des abscisses, - et les droites d'équations = et = est égal à : Propriétés sur les bornes d'intégration : =0 Méthode : Déterminer une intégrale par calculs d'aire (2)

Vidéo https://youtu.be/l2zuaZukc0g

Représenter la droite d'équation =3- dans un repère.

En déduire

3-

en effectuant des calculs d'aire.

Correction

La droite d'équation =3- coupe l'axe des abscisses en =3.

Donc, 3-≥0sur l'intervalle

2;3 3;5

D'après la relation de Chasles, on a :

6 *3- =*3- +*3-

Donc :

*3-

1×1

2 +P-

2×2

2 Q =-1,5

Remarque :

Si une intégrale est nulle, alors la fonction n'est pas nécessairement nulle.

On a par exemple :

=0 En effet, la courbe représentative de la fonction cube est symétrique par rapport à l'origine du repère, donc :

Et donc :

=0

Partie 2 : Intégrale et primitive

1) Fonction définie par une intégrale

Théorème : Soit une fonction continue sur un intervalle [;]. La fonction définie sur [;] par : est la primitive de qui s'annule en . =3- 7 Méthode : Étudier une fonction définie par une intégrale

Vidéo https://youtu.be/6DHXw5TRzN4

Soit la fonction définie sur [0 ; 10] par : 2 a) Étudier les variations de . b) Tracer sa courbe représentative.

Correction

a) ⟼ 2 est continue et positive sur [0 ; 10] donc est dérivable sur [0 ; 10] et 2 >0.

Donc est croissante sur [0 ; 10].

On dresse le tableau de variations :

est égal à l'aire du triangle rouge.

Ainsi

10

10×5

2 =25.. b) Pour tout de [0 ; 10], on a 2 2 2 4 On a ainsi la représentation graphique de :

0 10

25
0 8

2) Calcul d'intégrales

Propriété : Soit une fonction continue sur un intervalle [;].

Si est une primitive de alors :

Définition : Soit une fonction continue sur un intervalle I, et deux réels de I et une

primitive de sur [;]. On appelle intégrale de sur [;] la différence

Notation :

Rappels de la classe de 1

ère

: Primitives des fonctions usuelles

Fonction Primitive

=cos 0 1 sin =sin 0 1 cos Méthode : Calculer une intégrale à partir d'une primitive

Vidéo https://youtu.be/8ci1RrNH1L0

Calculer les intégrales suivantes :

=*3 +4-5 =*4cos 9

Correction

On a :

Une primitive de est la fonction telle que : 1 3

Donc :

1 3 4 1 1 3 ×4 1 3 ×1 63
3 =*3 +4-5

On a :

=3 +4-5 Une primitive de est la fonction telle que : +2 -5

Donc :

+2 -5 =5 +2×5 -5×5- 2 +2×2 -5×2 =144 =*4cos

On a :

=4cos

2+

Une primitive de est la fonction telle que : =2sin

2+

Donc :

=*4cos 2sin

2+

0 =2sin

2+

-2sin

2×0+

=2sin

3

-2sin =0

3) Propriété de linéarité

Propriété :

a) Pour réel, b) Méthode : Calculer une intégrale en appliquant la linéarité

Vidéo https://youtu.be/B9n_AArwjKw

On pose : =

cos et = sin a) Calculer + et -.

On donne : cos

()+sin ()=1 et cos ()-sin ()=cos(2) b) En déduire et . 10

Correction

a) On calcule en appliquant les formules de linéarité : +=*cos +*sin -=*cos -*sin =*cos +sin ()=*cos -sin =*1 =*cos(2) 1 2 sin(2)` =2= 1 2 sin

2×2

1 2 sin

2×0

=0 b) On a ainsi : +=2 -=0 donc

2=2

soit : ==

2) Positivité et comparaison

Propriétés :

a) Si, pour tout de , ()≥0 , alors ≥0 b) Si, pour tout de , ()≥(), alors

Méthode : Encadrer une intégrale

Démontrer que :

1 2

Correction

*0 *0 =0et* 1 2 1 2 -0= 1 2

D'où :

1 2quotesdbs_dbs35.pdfusesText_40
[PDF] tp mouvement d'un projectile dans un champ de pesanteur uniforme

[PDF] aire sous la courbe pharmacocinétique

[PDF] aire sous la courbe biodisponibilité

[PDF] tp chute parabolique d'une bille

[PDF] tp mouvement parabolique

[PDF] fabriquer un zootrope simple

[PDF] image zootrope

[PDF] exercice mouvement d'une particule chargée dans un champ électrique

[PDF] image pour zootrope

[PDF] exemple d'un texte narratif descriptif

[PDF] production écrite texte narratif exemple

[PDF] un texte narratif définition

[PDF] comment rédiger un texte narratif

[PDF] equilibre d'un solide en rotation autour d'un axe fixe exercices

[PDF] mouvement de rotation d'un solide autour d'un axe fixe cours