[PDF] Fonctions hyperboliques et applications r´eciproques





Previous PDF Next PDF



1) a) La fonction sinus hyperbolique : sh(x) = b) La fonction cosinus

Donc sh est impaire. b) La fonction cosinus hyperbolique : ch(x) = ex + e. ?x.



Chapitre13 : Fonctions hyperboliques

I Les fonctions hyperboliques directes B) Étude de la fonction sh (sinus hyperbolique) ... C) Étude de la fonction ch (cosinus hyperbolique).



Formulaire de trigonométrie

Les fonctions cosinus et sinus vérifient de nombreuses relations. La fonction cosinus hyperbolique est la fonction cosh : R ? R définie par cosh(x) =.



Chapitre III - Fonctions hyperboliques

A.1 Sinus hyperbolique et cosinus hyperbolique. A.1.1 Définition. On appelle fonction sinus hyperbolique la fonction sh : R ? Rx ?? shx = ex ? e?x.



Ch 4 FONCTIONS HYPERBOLIQUES.pdf

FONCTIONS HYPERBOLIQUES 4. A. Fonctions exponentielle puissance et logarithme. 1. La fonction exponentielle de base a La fonction cosinus hyperbolique.



Fonctions hyperboliques et applications r´eciproques

A.1 Sinus hyperbolique et cosinus hyperbolique On appelle fonction cosinus hyperbolique la fonction ch : R ? Rx ?? chx = ex + e?x.



Petit formulaire bien utile Formules trigonométriques

Fonctions hyperboliques. On rappelle que les fonctions sinus hyperbolique sh cosinus hyperbolique ch et tangente hyper- bolique th sont définies sur R. Par 



Synthèse de cours PanaMaths ? Fonctions hyperboliques

Les fonctions sinus hyperbolique et tangente hyperbolique définissent deux bijections de dans et la fonction cosinus hyperbolique définit une bijection de + 



Fonctions trigonométriques et fonctions hyperboliques

On définit les fonctions cosinus sinus et tangente



La chaînette 1 Le cosinus hyperbolique

Ici “ch” désigne le cosinus hyperbolique défini à partir de la fonction Le cosinus hyperbolique et le sinus hyperbolique sont la partie paire et impaire ...

Chapitre III

Fonctions hyperboliques et applications

r

´eciproquesA Fonctions hyperboliques directes

A.1 Sinus hyperbolique et cosinus hyperboliqueOn va d´efinir de nouvelles fonctions inspir´ees notamment par les formules d"Euler concernant les fonc-

tions sinus et cosinus.A.1.1 D´efinitionOn appelle fonctionsinus hyperboliquela fonction sh :R→R,x?→shx=ex-e-x2 .On appelle fonctioncosinus hyperboliquela fonction ch :R→R,x?→chx=ex+e-x2 .A.1.2 Remarques ?La fonction sh est impaire. En effet, elle est d´efinie surRet, pour toutx?R, on a sh(- x) =e-x-e-(-x)2 =--e-x+ex2 =-sh x.

Le graphe de la fonction sh admet donc l"origine pour centre de sym´etrie; en particulier, on a sh0 = 0.?La fonction ch est paire.

En effet, elle est d´efinie surRet, pour toutx?R, on a ch(- x) =e-x+e-(-x)2 =e-x+ex2 = chx.

38Chapitre III- Fonctions hyperboliques et applications r´eciproquesLe graphe de la fonction ch admet donc l"axe des ordonn´ees pour axe de sym´etrie.

?Pour toutx?R, on a ch2x-sh2x= 1.

En effet, pour toutx?R, on a

ch

2x-sh2x=?ex+e-x2

2-?ex-e-x2

2=?ex?2+ 2exe-x+?e-x?24

-?ex?2-2exe-x+?e-x?24 d"o`u ch

2x-sh2x=4exe-x4

= 1.?Pour toutx?R, on a chx?1. En effet, soitx?R, on aex>0 ete-x>0 donc chx >0. D"autre part, la relation ch2x= 1+sh2x donne ch

2x?1 donc chx?1 ou chx?-1. Comme chx >0, c"est donc que chx?1.A.1.3 Proposition

La fonction sh est d´erivable surRet sa d´eriv´ee est ch.La fonction ch est d´erivable surRet sa d´eriv´ee est sh.D´emonstration

La fonction exponentielle est d´erivable surR, de mˆeme que la fonctionx?→e-x, donc les fonctionch et sh sont d´erivables surR(ce sont des sommes de fonctions d´erivables). Pour toutx?R, on a

sh ?x=?ex-e-x2 ?=ex-?-e-x?2 =ex+e-x2 = chxi.e.sh?= ch. De mˆeme, pour toutx?R, on a ch ?x=?ex+e-x2 ?=ex+?-e-x?2 =ex-e-x2 = shxi.e.ch?= sh.Passons `a l"´etude des variations de ces deux fonctions.

?Pour la fonction sh, il suffit de l"´etudier sur [0,+∞[ puisqu"il s"agit d"une fonction impaire. La d´eriv´ee

de sh est ch et on a vu que chx?1>0 pour toutx?Rdonc sh est strictement croissante surR.

On a ch0 = 1 donc le graphe de sh admet la droite Δ d"´equationy=xpour tangente en 0.´Etudions

la position du graphe par rapport `a cette tangente. Il convient donc d"´etudier le signe de la fonction

f(x) = shx-x, cette fonction est d´erivable, de d´eriv´eef?(x) = chx-1?0. La fonctionfest donc

croissante surRorf(0) = 0 doncf(x)?0 pour toutx?0i.e.le graphe de sh est situ´e au-dessus de la droite Δ pourx?0 et en-dessous de Δ pourx?0.

En ce qui concerne les limites, on aex----→x→+∞+∞ete-x----→x→+∞0 donc shx----→x→+∞+∞. Cherchons

maintenant si le graphe admet une asymptote en +∞; pour toutx >0, on a shxx x→+∞+∞.

On dit que le graphe de sh admet en +∞unebranche paraboliquede direction l"axe des ordonn´ees.

A- Fonctions hyperboliques directes39

On peut pr´eciser ce r´esultat puisque

shx-ex2 =-e-x2 ----→x→+∞0- i.e.le graphe de sh et celui de la courbeCd"´equationy=ex2 sont asymptotes en +∞; de plus, la limite

´etant 0

-, le graphe de sh est situ´e en-dessous deC.

On peut maintenant dresser le tableau de variations de la fonction sh et tracer son graphe.x-∞0 +∞

sh?x= chx+ + shx+∞ -∞0 0

ΔC?Pour la fonction ch, il suffit l`a aussi de l"´etudier sur [0,+∞[ puisqu"il s"agit d"une fonction paire. La

d´eriv´ee de ch est sh et on a vu que shx >0 pourx >0 donc ch est strictement croissante sur ]0,+∞[.

On a sh0 = 0 donc le graphe de sh admet la droite Δ ?d"´equationy= 1 pour tangente en 0. Comme chx?1 pour toutx, le graphe de ch est situ´e au-desus de Δ?.

En ce qui concerne les limites, on aex----→x→+∞+∞ete-x----→x→+∞0 donc chx----→x→+∞+∞. De mˆeme

que pour la fonction sh, le graphe de ch admet en +∞unebranche paraboliquede direction l"axe des

ordonn´ees; plus pr´ecis´ement, on a chx-ex2 =e-x2 ----→x→+∞0+

40Chapitre III- Fonctions hyperboliques et applications r´eciproquesi.e.le graphe de ch et celui de la courbeCd"´equationy=ex2

sont asymptotes en +∞; de plus, le graphe de ch est situ´e au-dessusC.

On peut maintenant dresser le tableau de variations de la fonction ch et tracer son graphe.x-∞0 +∞

ch?x= shx-+ chx+∞+∞

10Δ

CA.2 Tangente hyperbolique

Le fait que la fonction cosinus hyperbolique ne s"annule pas permet d"introduire la fonction suivante :

A.2.1 D´efinition

On appelle fonctiontangente hyperboliquela fonction th :R→R,x?→thx=shxchx=ex-e-xe x+e-x.A.2.2 Remarques ?La fonction th est impaire. En effet, elle est d´efinie surRet, pour toutx?R, on a th(-x) =sh(-x)ch(-x)=-shxchx=-thx.

Le graphe de la fonction th admet donc l"origine pour centre de sym´etrie; en particulier, on a th0 = 0.?Pour toutx?R, on a 1-th2x=1ch

2x.

En effet, pour toutx?R, on a

1-th2x= 1-sh2xch

2x=ch2x-sh2xch

2x=1ch

2x.

A- Fonctions hyperboliques directes41

?On rencontre parfois la fonctioncotangente hyperboliquequi est la fonctionx?→1thx(mais qui n"est

pas d´efinie en 0).A.2.3 Proposition La fonction th est d´erivable surRet sa d´eriv´ee est donn´ee par : th?(x) = 1-th2x=1ch

2x.D´emonstration

Les fonctions sh et ch sont d´erivables surRet la fonction ch est d´efinie sur toutRdonc le quotientth =

shch d´efinit bien une fonction d´erivable surR. Pour toutx?R, on a th ?x=?shxchx? ?=sh?xchx-shxch?xch

2x=ch2x-sh2xch

2x=1ch

2x.Passons `a l"´etude des variations. Il suffit d"´etudier th sur [0,+∞[ puisqu"il s"agit d"une fonction impaire.

La d´eriv´ee de th est?1ch

2donc th est strictement croissante surR.

On a ch0 = 1 donc le graphe de th admet la droite Δ d"´equationy=xpour tangente en 0.´Etudions

la position du graphe par rapport `a cette tangente. Il convient donc d"´etudier le signe de la fonction

g(x) = thx-x, cette fonction est d´erivable, de d´eriv´eeg?(x) =?1-th2x)-1?0. La fonctiongest donc

d´ecroissante surRorg(0) = 0 doncg(x)?0 pour toutx?0i.e.le graphe de th est situ´e en-dessous de la droite Δ pourx?0 et au-dessus de Δ pourx?0.

En ce qui concerne les limites, on a :

thx=ex-e-xe x+e-x=exe x1-e-2x1 +e-2x=1-e-2x1 +e-2x

maise-2x----→x→+∞0 donc le num´erateur et le d´enominateur du quotient ci-dessous tendent tous deux

vers 1. Donc lim x→+∞thx= 1. Il s"ensuit que le graphe de th admet la droite d"´equationy= 1 pour

asymptote en +∞(donc, par imparit´e, il admet la droite d"´equationy=-1 pour asymptote en-∞).

On peut maintenant dresser le tableau de variations de la fonction th et tracer son graphe.x-∞0 +∞

th?x=1ch2x+ + thx1 -10 0 -11

42Chapitre III- Fonctions hyperboliques et applications r´eciproquesB Fonctions hyperboliques r

´eciproquesB.1 R

´eciproque de la fonction sinus hyperbolique?La fonction sh est continue et strictement croissante surR, elle r´ealise donc une bijection de cet

intervalle sur son imageRet on peut d´efinir son application r´eciproque.B.1.1 D´efinition On appellefonction argument sinus hyperbolique, et on note Argsh :R→R,x?→Argshx ,l"application r´eciproque de la fonction sinus hyperbolique.

B.1.2 Remarque

Pour toutx?R, on a sh?Argshx?=xet Argsh?shx?=x.

Les variations de la fonction Argsh surRsont les

mˆemes que celles de la fonction sh surR.x-∞0 +∞

Argshx+∞

-∞0 0

ΔB.1.3 Proposition

La fonction Argsh est d´erivable surRet

pour toutx?R,Argsh?(x) =1⎷1 +x2.D´emonstration

En effet, pour toutx?R, on a

Argsh ?(x) =1sh ?(Argshx)=1ch(Argshx).Mais la fonction ch est positive donc on peut ´ecrire Argsh ?(x) =1? ch

2(Argshx)=1?

1 + sh

2(Argshx)et la conclusion vient du fait que sh(Argshx) =x.

B- Fonctions hyperboliques r´eciproques43

B.2 R

´eciproque de la fonction cosinus hyperbolique?La fonction ch est continue et strictement croissante sur [0,+∞[, elle r´ealise donc une bijection de

cet intervalle sur son image [1,+∞[ et on peut d´efinir son application r´eciproque.B.2.1 D´efinition

On appellefonction argument cosinus hyperbolique, et on note

Argch : [1,+∞[→[0,+∞[,x?→Argchx ,l"application r´eciproque de la restriction de la fonction cosinus hyperbolique `a l"intervalle [0,+∞[.B.2.2 Remarques

?Pour toutx?1, on a ch?Argchx?=x.?Pour toutx?0, on a Argch?chx?=x. Il faut, de nouveau, prendre garde au fait que l"expression Argch?chx?est d´efinie pour toutx?R mais ne vaut exactementxque lorsquex?0. Les variations de la fonction Argch sur [1,+∞[ sont les mˆemes que celles de la fonction ch sur [0,+∞[.x1 +∞

Argchx+∞

00 1B.2.3 Proposition

La fonction Argch est d´erivable sur ]1,+∞[ et pour toutx?R,Argch?(x) =1⎷x

2-1.D´emonstration

En effet, pour toutx?R, on a

Argch ?(x) =1ch

?(Argchx)=1sh(Argchx).Mais Argchx?0 et la fonction sh est positive sur [0,+∞[ donc sh(Argchx)?0 et on peut ´ecrire

Argch ?(x) =1? sh

2(Argchx)=1?

ch

2(Argchx)-1et la conclusion vient du fait que ch(Argchx) =x.

44Chapitre III- Fonctions hyperboliques et applications r´eciproquesB.3 R

´eciproque de la fonction tangente hyperbolique?La fonction th est continue et strictement croissante surR, elle r´ealise donc une bijection de cet

intervalle sur son image ]-1,1[ et on peut d´efinir son application r´eciproque.B.3.1 D´efinition

On appellefonction argument tangente hyperbolique, et on note

Argth :]-1,1[→R,x?→Argthx ,l"application r´eciproque de la fonction tangente hyperbolique.

B.3.2 Remarques

?Pour toutx?]-1,1[, on a th?Argthx?=x.?Pour toutx?R, on a Argth?thx?=x. Les variations de la fonction Argth sur ]-1,1[ sont les mˆemes que celles de la fonction th surR.x-1 0 1

Argthx+∞

-∞0 0-11

ΔB.3.3 Proposition

La fonction Argth est d´erivable sur ]-1,1[ et

pour toutx?]-1,1[,Argth?(x) =11-x2.D´emonstration

En effet, pour toutx?]-1,1[, on a

Argth ?(x) =1th ?(Argthx)=11-th2(Argthx).et la conclusion vient du fait que th(Argthx) =x.

C- Identit´es et relations45

C Identit

´es et relationsC.1 Quelques formules de trigonom

´etrie hyperboliqueLes formules de trigonom´etrie classiques ont des analogues en"trigonom´etrie hyperbolique». Outre la

formulech2a-sh2a= 1, on a par exemplech(a+b) = chachb+ shashb ch(a-b) = chachb-shashb sh(a+b) = shachb+ chashb sh(a-b) = shachb-chashb th(a+b) =tha+ thb1 + thathb th(a+b) =tha-thb1-thathb d"o`u l"on d´eduitch(2a) = ch2a+ sh2a= 2ch2a-1 = 1 + 2sh2a sh(2a) = 2shacha th(2a) =2tha1 + th 2a.

Notons en outre le lien suivant entre les fonctions trigonom´etriques et les fonctions hyperboliques :

cha= cos(ia) et sha=-isin(ia).C.2 Expression des fonctions hyperboliques r ´eciproques avec le logarithme n´ep´erienC.2.1 Proposition (a)Pour toutx?R, on a : Argshx= ln?x+?x

2+ 1?.(b)Pour toutx?1, on a : Argchx= ln?x+?x

2-1?.(c)Pour toutx?]-1,1[, on a : Argthx=12

ln?1 +x1-x? .D´emonstration (a)La relationy= shxsignifie 2y=ex-e-xi.e.?ex?2-2yex-1 = 0, d"o`u y= shx??? X=ex X

2-2yX-1 = 0???X=ex

X=2y±⎷4y2+42

=y±?y 2+ 1

46Chapitre III- Fonctions hyperboliques et applications r´eciproquesmaisX=ex>0 alors quey-?y

2+ 1<0 donc

y= shx??ex=y+?y

2+ 1??x= ln?y+?y

2+ 1?donc Argshy= ln?y+?1 +y2?.(b)La relationy= chxsignifie 2y=ex+e-xi.e.?ex?2-2yex+ 1 = 0, d"o`u

y= chx??? X=ex X

2-2yX+ 1 = 0???X=ex

X=2y±⎷4y2-42

=y±?y

2-1mais on a

ln ?y-?y

2-1?= ln?

?y-?y

2-1??y+?y

2-1?y+?y

2-1? = ln?1y+?y 2-1?

y→+∞-∞alors que la limite devrait ˆetre +∞donc cette solution est exclue. Ainsi, on a

y= chx??x= ln?y+?y

2-1?ce qui signifie que Argchy= ln?y+?y

2-1?.(c)On posef(x) =12

ln?1 +x1-x? pour toutx?]-1,1[ alors f ?(x) =12

2(1-x)211+x1-x=1(1-x)(1 +x)=11-x2doncf?(x) = Argth?(x) pour toutx?]-1,1[. On en d´eduit que les deux fonctionsfet Argthdiff`erent d"une constante sur l"intervalle ]-1,1[ or on a

f(0) =12 ln?1 + 01-0? = 0 = Argth(0)donc les fonctionsfet Argth sont ´egales sur ]-1,1[.quotesdbs_dbs12.pdfusesText_18
[PDF] Les fonctions d'un groupe de mots

[PDF] les fonctions d'un médicament

[PDF] Les Fonctions d'un nombre

[PDF] Les fonctions d'un personnage caché

[PDF] les fonctions d'une marque

[PDF] Les fonctions dans un carré

[PDF] Les fonctions de coût

[PDF] les fonctions de f(x) et les determiner graphiquemsn

[PDF] Les fonctions de l'écriture autobiographique, texte de Michel Leiris dont le titre est Gorges coupée

[PDF] les fonctions de l'administration

[PDF] les fonctions de lecrivain

[PDF] les fonctions de l'écrivain dans la société

[PDF] les fonctions de l'éducation

[PDF] les fonctions de l'état

[PDF] les fonctions de l'information