[PDF] 4- Chapitre 3 - Les nombres relatifs en écriture fractionnaire





Previous PDF Next PDF



4- Chapitre 3 - Les nombres relatifs en écriture fractionnaire

Les nombres relatifs en écriture fractionnaire. I – Simplification d'écriture II – Comparaison de deux fractions – Égalité des produits en croix :.



NOMBRES EN ECRITURE FRACTIONNAIRE

Fraction décimale : c'est une fraction dont le dénominateur est 1 ; 10 ; 100 ; 1000 …. Utile pour transformer un nombre décimal en fraction ! 03= 10. 3.



Chapitre3 : Nombres relatifs en écriture fractionnaire

4ème : Chapitre18 : Multiplication et division de fractions avec des nombres relatifs. 1. Multiplication de fractions. 2. Divisions de fractions.



Nombres relatifs en écriture fractionnaires

Nombres relatifs en écriture fractionnaire. 1) quotients égaux. 1 a) – propriété Exemple 1 : transformer. 30. 2. ? en fraction positf entier relatif.



Chapitre 3 – nombres en écriture fractionnaire et calcul littéral

Le numérateur est au-dessus du trait de fraction (penser Numérateur dans les NUages) Pour multiplier des nombres relatifs en écriture fractionnaire ...



Chapitre3 : Nombres relatifs en écriture fractionnaire

fraction du pot de crème de. 1kg vais utiliser ? 2. Divisions de fractions. 2.1 Inverse d'un nombre. Deux nombres sont inverses l'un 



Séquence : MULTIPLICATION DE NOMBRES RELATIFS EN

désignent des nombres relatifs avec. Propriété : Pour multiplier deux nombres relatifs en écriture fractionnaire : - On multiplie les numérateurs entre eux ;.



Chapitre3 : Nombres relatifs en écriture fractionnaire

Chapitre10 : Additions et soustractions de fractions avec des nombres relatifs. 1. fractions égales. Enoncé1 : Simplifier les fractions.



cycle4_2016_v2_1_.pdf

24-Jun-2016 Comparer deux écriture fractionnaire. Avec des nombres positifs tests n° 5 et 6. Avec des nombres relatifs test n° 10.



Chapitre 1

Règle 1 : Deux fractions sont égales lorsqu'il y a égalité des produits en Règle 2 : On ne change pas un nombre relatif en écriture fractionnaire en ...

Chapitre 34ème

Les nombres relatifs en écriture fractionnaireLes nombres relatifs en écriture fractionnaireLes nombres relatifs en écriture fractionnaireLes nombres relatifs en écriture fractionnaire

I - Simplification d"écriture fractionnaire :

Propriété :

On ne change pas la valeur d"un quotient de deux nombres relatifs lorsqu"on multiplie (ou divise) ces deux nombres par un même nombre relatif non nul. a b = aGk bGk ; a b = aHk bHk avec a, b et k des nombres relatifs, b¼0 , k¼0

Exemples : -0,3

17 = -0,3G10

17G10 = -3

170
-90 4 II - Comparaison de deux fractions - Égalité des produits en croix : Méthode vue en 5ème : Pour comparer les fractions a b et c d avec a, b, c et d des nombres relatifs, b¼0 , d¼0, on les met au même dénominateur puis on compare les numérateurs.

Exemple : Comparer -2

3 et 3

-5 -2

3 = -2G5

3G5 = -10

15 et 3

15

Donc -10

15 < -9

15 soit -2

3 < 3 -5

Propriété des produits en croix :

a, b, c et d désignent des nombres relatifs, b¼0 , d¼0 → Si a b = c d alors aGd= bGc → Si aGd= bGc alors a b = c d

Exemples :

1)Les fractions

17 3 et 289

51 sont-elles égales?

On calcule

17G51 et 3G289 puis on compare les résultats.

17G51 = 867 et 3G289 = 867. D"après les produits en croix, les fractions sont égales.

17

3 = 289

51

M. HannonAnnée 2009/10

Chapitre 34ème

2)Les quotients 1567

8842 et 4328

19343 sont-ils égaux?

A la calculatrice,

1567G19343 = 30 310 481 et 8842G4328 = 38 268 176 donc d"après les

produits en croix, les quotients sont différents. 1567

8842¼4328

19343

Remarque : Il est possible ici de répondre à la question sans utiliser la calculatrice et sans poser les

multiplications.

On cherche le dernier chiffre du produit

8G2 = 16 donc le dernier chiffre du produit Ѝ ЌЋБGБ БЍЋ est un 6.

Les produits

ББЍЋet ЍЌЋБ

ЊВЌЍЌsont

différents.

III - Additions et soustractions :

Propriété :

Pour additionner (ou soustraire) deux nombres relatifs en écriture fractionnaire de même dénominateur on additionne (ou on soustrait) les numérateurs et on garde le dénominateur. a c+b c ; a c - b c = a-b c avec a, b, c des nombres relatifs, c¼0

Remarque : Si les dénominateurs ne sont pas les mêmes, on transforme les écritures factionnaires

pour les écrire avec le même dénominateur.

Exemples : Calculer puis simplifier.

-2 7 + 4 7 = 7 = 2 7 5 -6 - 2

3 = -5

6 - 4

6 = -5-4

6 = -9

6 = -3

2

G4 G5

2

5 - -5

4 = 8

20 - -25

20 = 33

20

G4 G5

M. HannonAnnée 2009/10

Chapitre 34ème

IV - Multiplications :

Propriété :

Pour multiplier deux nombres en écriture fractionnaire on multiplie les numérateurs entre eux et

on multiplie les dénominateurs entre eux. a bG c d = aGc bGd avec a, b, c et de des nombres relatifs, b¼0 , d¼0

Exemples : Calculer puis simplifier.

H2 5 -12G2

7 = 5G2

-12G7 = 10 -84 = 5 -42 = -5 42
H2

3 = -0,5

1G-4

1G3 = 2

3 Remarques : Le plus efficace pour calculer un produit : → on applique la règle des signes d"un produit pour déterminer le signe du produit. → on pense à simplifier avant de faire les calculs. 5 -12G2

7 = - 5G2

6G2G7 = - 5

6G7 15 -49G-7 -10 = -15G7

49G10 = -5G3G7

7G7G5G2 = -3

7G2 = -3

14

V - Inverse d"un nombre relatif non nul :

Définition :

Deux nombres relatifs non nuls sont inverses l"un de l"autre lorsque leur produit est égal à 1.

Exemples :4G0,25 = 1 donc 4 et 0,25 sont inverses.

Remarques

: 0 n"a pas d"inverse car il n"existe pas de nombre dont le produit par 0 donne 1. Un nombre relatif et son inverse ont le même signe.

Propriété

Si a désigne un nombre relatif non nul, l"inverse de a est 1 a

M. HannonAnnée 2009/10

Chapitre 34ème

En effet, aG1

a = a a = 1

Exemples : L"inverse de - 4 est 1

-4 = -1

4 = - 0,25.

L"inverse de 3 est

1 3

Propriété :

a et b désignent des nombres relatifs non nuls.

L"inverse de

a b est b a

En effet, a

bGb a = aGb aGb = 1

Exemples : L"inverse de 7

-3 est -3

7 = -3

7

L"inverse de -1,3

-9 est -9 -1,3 = 9

1,3 = 90

13 Attention : Ne pas confondre l"inverse d"un nombre avec son opposé.

L"inverse de 5 est

1

5 = 0,2 et l"opposé de 5 est -5

VI - Quotient :

Propriété :

Diviser par un nombre relatif non nul revient à multiplier par son inverse. aHb = a b = aG1 b. Diviser par b revient à multiplier par 1 b avec a et b deux nombres relatifs, b¼0

Exemples :

5H8 = 5G1

8 = 5G0,125 = 0,625

Propriété

a, b, c et d désignent des nombres relatifs, b¼0 , c¼0 , d¼0 a b c d = a bH c d = a bG d c

M. HannonAnnée 2009/10

Chapitre 34ème

Exemples :

5 3H7 2 = 5 3G2

7 = 10

21
2 5 -73 = 2 35
4

3H2 = 4

3G1

2 = 2G2G1

3G2 = 2

3

M. HannonAnnée 2009/10

quotesdbs_dbs46.pdfusesText_46
[PDF] Les fractions!

[PDF] Les fractions, dans un collège

[PDF] Les fractions, racines carrées et puissances

[PDF] les frais et les dépenses

[PDF] les français dans le monde : de nouvelles mobilités

[PDF] Les Français en 1919

[PDF] Les français et la télévision (STATISTIQUES Seconde)

[PDF] les francais et le vote de 1814 a 1870

[PDF] les français face a la premiere guerre totale

[PDF] les français majuscule

[PDF] les francais pillent les oeuvres des pays conquis

[PDF] les fraudes du lait

[PDF] les fraudes du lait pdf

[PDF] Les fréquences cardiaques et respiratoires

[PDF] Les fréquences cumulées