[PDF] Exercices corrigés Fonctions de deux variables Fonctions convexes





Previous PDF Next PDF



Exercices corrigés

(a) Montrer que D est un sous-ensemble convexe de R2. (b) Montrer que la f est donc convexe sur E1 et concave sur E2. Exercice 10. On consid`ere la ...



Feuille dexercices VI.

Correction 1. Une partie C d'un espace vectoriel réel est convexe si elle contient tout le segment compris entre deux quelconques de ses points.



Séance du 30/05/2015 de ParisMaths Ensembles convexes Séance du 30/05/2015 de ParisMaths Ensembles convexes

30 mai 2015 appartient à C. 1 Enveloppe convexe. Exercice 3. Pour un ensemble A ⊂ E on appelle enveloppe convexe de A ...



MP/MP* MP/MP*

convexe. d) Vrai. e) Faux. L'ensemble n'est pas une partie convexe de . f ... d'inflexion. Corrigés des exercices. Exercice 1. La fonction sin est deux fois ...



MATH 321 - Licence de mathématiques Georges COMTE

2 mar. 2017 ensemble convexe de Rn ou une partie convexes de Rn ou plus simplement un ... un convexe (cf Exercice 3). Mais ce convexe n'est autre que E. Page ...



4. Convexité - Exercices

partie convexe non vide. Montrer que l'application f : x → d(x A) est ... Convexité - Exercices (corrigés). Barycentres



MP* Feuille dexercices – Convexité

Exercice 11 * : Soient C1C2 deux parties convexes du R-espace vectoriel E. Montrer que l'enveloppe convexe de C1 ∪ C2 est l'ensemble des segments [x1



Exercices de mathématiques - Exo7

j=1 aij = 1) est un compact convexe de Mn(R). 9. Montrer que l'ensemble des matrices diagonalisables de Mn(R) est connexe par arcs. Correction ▽.



Analyse fonctionnelle. Devoir à la maison I Ensembles convexes

28 oct. 2015 Corrigé. I Ensembles convexes. 1. (a) Soit (Ai)i∈I une famille d ... D'après l'exercice 3 du TD1 l'ensemble A est donc un compact de E ...



Exercices corrigés

(a) Montrer que D est un sous-ensemble convexe de R2. (b) Montrer que la fonction h = ln ?f est bien définie sur D et étudier la convexité ou la concavité 



MP/MP*

Fonctions convexes d'une variable réelle 148 – 5. Fonctions Synthèse et méthodes 159 – Exercices 161 – Corrigés 165. Chapitre 6.



Analyse fonctionnelle. Devoir à la maison I Ensembles convexes

28 oct. 2015 Corrigé. I Ensembles convexes. 1. (a) Soit (Ai)i?I une famille ... (fn)n converge vers 0 dans E. D'après l'exercice 3 du TD1 l'ensemble A.



MATH 321 - Licence de mathématiques Georges COMTE

2 mars 2017 ensemble convexe de Rn ou une partie convexes de Rn ou plus simplement un ... Mais Dx étant identifiée `a R par l'Exercice 1.7



Corrigés dexercices pour les TD 1 et 2

Si A est une partie de E on appelle enveloppe convexe de A



Optimisation et analyse convexe

Le recueil d'exercices et problèmes corrigés que nous proposons ici Si l'on représente l'ensemble des formes linéaires sur E par E via le produit.



Exercices corrigés Fonctions de deux variables Fonctions convexes

On admet que cet ensemble est ouvert. Est-il convexe ? On admet que f est de classe C1 sur son domaine de définition. 2. Représenter sur le même dessin 



Exercices de licence

Exercice 20 Soit X un espace topologique et D un sous-ensemble dense dans X. Exercice 31 Montrer que dans un espace normé



Séance du 30/05/2015 de ParisMaths Ensembles convexes

30 mai 2015 Exercice 3. Pour un ensemble A ? E on appelle enveloppe convexe de A



30/10/2013 Correction des exercices associés au cours sur les

30 oct. 2013 nombre fini des demi-plans qui sont des ensembles convexes. a2 a1 0 1 2 a2 a1. 0. 1. 2. 3. Figure 1: Ex.1.45



[PDF] Exercices corrigés

(a) Montrer que D est un sous-ensemble convexe de R2 (b) Montrer que la fonction h = ln ?f est bien définie sur D et étudier la convexité ou la concavité 



[PDF] Analyse fonctionnelle Devoir à la maison I Ensembles convexes

28 oct 2015 · Corrigé I Ensembles convexes 1 (a) Soit (Ai)i?I une famille (fn)n converge vers 0 dans E D'après l'exercice 3 du TD1 l'ensemble A



[PDF] Feuille dexercices VI

Feuille d'exercices VI Ensembles et fonctions convexes Exercice 1 Montrer que les ensembles Ci suivants sont convexes et trouver les cônes



[PDF] Exercices corrigés sur les ensembles convexes pdf - Squarespace

28 oct 2015 · (a) Montrer que D est un sous-ensemble convexe de R2 (b) Montrer que la fonction h = ln ?f est bien définie sur D et étudier la convexité ou 



[PDF] 9782311400243pdf

Fonctions convexes d'une variable réelle 148 – 5 Fonctions Synthèse et méthodes 159 – Exercices 161 – Corrigés 165 Chapitre 6



[PDF] MATH 321 - Licence de mathématiques - Georges Comte

2 mar 2017 · ensemble convexe de Rn ou une partie convexes de Rn ou plus simplement un Mais Dx étant identifiée `a R par l'Exercice 1 7 on



[PDF] Séance du 30/05/2015 de ParisMaths Ensembles convexes

30 mai 2015 · Exercice 3 Pour un ensemble A ? E on appelle enveloppe convexe de A et on note conv(A) l'intersection de tous les convexes contenant A



[PDF] MP* Feuille dexercices – Convexité

Exercice 11 * : Soient C1C2 deux parties convexes du R-espace vectoriel E Montrer que l'enveloppe convexe de C1 ? C2 est l'ensemble des segments [x1x2]



[PDF] Convexité chapitre 119 I Enveloppe convexe - cpge paradise

Exercice I 5 On suppose que E est de dimension finie Soit K une partie compacte de E Montrer que conv(K) est 

  • Comment montrer un ensemble est convexe ?

    Une partie C de Rn est dite convexe si, pour tout couple (x,y) d'éléments de C , le segment [x,y] est entièrement contenu dans C . Autrement dit, C est convexe lorsque pour tous x,y?C x , y ? C et tout ??[0,1] ? ? [ 0 , 1 ] , ?x+(1??)y?C ? x + ( 1 ? ? ) y ? C .
  • Comment calculer une fonction convexe ?

    La fonction f est convexe sur I si sa dérivée f ' est croissante sur I, soit f ''(x) ? 0 pour tout x de I. La fonction f est concave sur I si sa dérivée f ' est décroissante sur I, soit f ''(x) ? 0 pour tout x de I. Soit la fonction f définie sur R par f (x) = 1 3 x3 ?9x2 + 4.
  • Comment montrer qu'un problème est convexe ?

    Théorème 2.1 Un fonction f est convexe si et seulement si, pour tout (x, y) ? (dom(f))2 et ? ? 0 tels que y + ?(y ? x) ? dom(f), f satisfait : f(y + ?(y ? x)) ? f(y) + ?(f(y) ? f(x)).
  • Une fonction convexe poss? une dérivée première croissante ce qui lui donne l'allure de courber vers le haut. Au contraire, une fonction concave poss? une dérivée première décroissante ce qui lui donne l'allure de courber vers le bas.
Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017

Exercices corrig´es

Fonctions de deux variables

Fonctions convexes et extrema libres

Exercice 1.62

Soit la fonctionfd´efinie par

f(x,y) =xαyβ

o`uαetβsont des r´eels non nuls. SoitC={(x,y)?R2,x >0,y >0}.On admet queCest ouvert.´Etudier la convexit´e

(ou la concavit´e) defsurCen discutant selon les valeurs deαetβ.

Corrig´e

Commen¸cons par remarquer que pour tout (x,y)? C, on a ln(f(x,y)) =αln(x)+βln(y). Ainsi, siα <0,β <0, ln◦fest

convexe (par les propri´et´es d"extension et d"addition), doncfest convexe. Calculons les d´eriv´ees partielles def. On a, pour tout (x,y)? C,∂f∂x (x,y) =αxα-1yβ,∂f∂y (x,y) =βxαyβ-1, puis ∂2f∂x

2(x,y) =α(α-1)xα-2yβ,∂2f∂x∂y

(x,y) =αβxα-1yβ-1,∂2∂y

2(x,y) =β(β-1)xαyβ-2. Le d´eterminant de la matrice

hessienne en (x,y) vaut doncrt-s2=αβ(α-1)(β-1)x2α-2y2β-2-(αβ)2x2α-2y2β-2=αβ(1-α-β)x2α-2y2β-2.

Celui-ci est du signe deαβ(1-α-β). Ainsi : •Siα <0,β >0 etα+β >1, on art-s2<0 etr≥0, doncfn"est ni convexe ni concave. •On peut faire la mˆeme analyse dans le cas sym´etriqueα >0,β <0. On r´esume tous ces r´esultats dans le tableau ci-dessous.αβα+βfest<0<0-convexe <0>0>1ni convexe ni concave >0<0>1ni convexe ni concave >0>0>1ni convexe ni concave

Exercice 2.42

On consid`ere la fonction r´eelle de deux variablesfd´efinie parf(x,y) =x2y-2x2. 1.

D ´etermineret repr ´esenterson e nsemblede d ´efinitionDf. On admet que cet ensemble est ouvert. Est-il convexe ?

On admet quefest de classeC1sur son domaine de d´efinition. 2. Repr ´esentersur le m ˆemedessin que la qu estion1 les courb esde niv eauC1,C-1/2etC0. 3.

Calculer le gradien tde fen tout point deDf.

1 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017 4.

´Ecrire le d´eveloppement limit´e `a l"ordre 1 defau point (1,1). En d´eduire une valeur approch´ee defau point

(0.9,1.1).

Corrig´e

1.

Le domaine d ed ´efinitionde festDf={(x,y)?R2,y?= 2x2}. Cet ensemble n"est pas convexe : il contient les

points (1,0) et (-1,0) mais pas leur milieu (0,0). 2.

Soit ( x,y)? Df.

On a (x,y)?C1?f(x,y) = 1?x2=y-2x2?y= 3x2.C1est donc la courbe d"´equationy= 3x2priv´ee du point (0,0).

On a (x,y)?C-1/2?x2y-2x2=-12

?y= 0.C-1/2est donc l"axe des abscisses priv´e du point (0,0). On a (x,y)?C0?x2= 0?x= 0.C0est donc l"axe des ordonn´ees priv´e du point (0,0).xyy= 2x2C 1C -1/2C

0•D

f3.On a, p ourtout ( x,y)? Df,∂f∂x (x,y) =2x(y-2x2)-x2×(-4x)(y-2x2)2=2xy(y-2x2)2et∂f∂y (x,y) =-x2(y-2x2)2, d"o`u le gradient :?f(x,y) =?2xy(y-2x2)2,-x2(y-2x2)2? 4. On a f(1,1) =-1 et?f(1,1) = (2,-1). D"o`u le d´eveloppement limit´e `a l"ordre 1 defen (1,1) : f(x,y) =-1 + 2(x-1)-(y-1) +?(x-1)2+ (y-1)2ε(x-1,y-1) avecε(x-1,y-1)-→(x,y)→(1,1)0.

En n´egligeant le terme de reste, on obtient l"approximationf(0.9,1.1)? -1 + 2(0.9-1)-(1.1-1) =-1.3.

Exercice 2.50

On consid`ere la fonction r´eelle de deux variablesfd´efinie par f: (x,y)?→x2+y2x+y. 1.

D ´etermineret repr ´esenterson e nsemblede d ´efinitionDf. On admet qu"il est ouvert. Est-il convexe ? Justifier votre

r´eponse. 2.

D ´etermineret repr ´esenter(sur le m ˆemegrap hiqueque p ourla question pr ´ec´edente)la courb ede niv eauCkpour

k=-2 etk= 1. 3. On admet qu efestC2surDf. Calculer ses d´eriv´ees partielles d"ordre 1 et 2. 4.

En d ´eduireune v aleurappro ch´eede fau point (0.9,1.2) et d´eterminer l"´equation de la tangente `a la courbe de

niveauC1au point (1,1). 2 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017 5.

T rouverles extrema d efsurDf.

6. T rouverles extrema d efsur le cercle de centre (-1,-1) et de rayon⎷2. 7. ´Etudier la convexit´e ou la concavit´e defsur les ensemblesE1etE2d´efinis par E

1={(x,y)?R2,x+y >0}etE2={(x,y)?R2,x+y <0}.

Corrig´e

1.

On a Df={(x,y)?R2,x+y?= 0}. C"est le plan priv´e de la droite d"´equationx+y= 0. Il n"est pas convexe : il

contient les points (1,0) et (-1,0) mais pas leur milieu (0,0). 2. Soit ( x,y)? Df. On a (x,y)?C-2?x2+y2+ 2(x+y) = 0?(x+ 1)2+ (y+ 1)2= 2. La courbe de niveau-2 est donc l"intersection du cercle de centre (-1,-1), de rayon⎷2, avecDf.

On a aussi (x,y)?C1?x2+y2-x-y= 0?(x-12

)2+(y-12 )2=12 . La courbe de niveau 1 est donc l"intersection du cercle de centre ( 12 ,12 ) et de rayon1⎷2 avecDf.xy C 1C -2x+y= 0• 3.

Soit ( x,y)? Df. On a∂f∂x

(x,y) =2x(x+y)-(x2+y2)(x+y)2=x2+ 2xy-y2(x+y)2et par sym´etrie,∂f∂y (x,y) =y2+ 2xy-x2(x+y)2. Puis ∂2f∂x

2(x,y) =2(x+y)(x+y)2-2(x+y)(x2+ 2xy-y2)(x+y)4=2((x+y)2-x2-2xy+y2)(x+y)3=4y2(x+y)3. Par

sym´etrie, ∂2∂y

2(x,y) =4x2(x+y)3. Enfin,∂2f∂x∂y

(x,y) =2(x-y)(x+y)2-2(x+y)(x2+ 2xy-y)2(x+y)4=4xy(x+y)3. 4. L"appro ximationaffine de fau pointM= (1,1) est alors donn´ee par fM(x,y) =f(1,1) +∂f∂x (M)(x-1) +∂f∂y (M)(y-1) = 1 +12 (x-1) +12 (y-1).

On en d´eduitf(0.9,1.2)??fM(0.9,1.2) = 1 +12

(0.9-1) +12 (1.2-1) = 1.05. L"´equation de la tangente `aC1en (1,1) est donn´ee par ∂f∂x (M)(x-1) +∂f∂y (M)(y-1) = 0?x+y-2 = 0.

5.Df´etant ouvert, cherchons les points critiques defsurDf. On a?f(x,y) = 0?(x2+2xy-y2,y2+2xy-x2) = (0,0).

En additionnant les deux relations, on obtient 4xy= 0 doncx= 0 ouy= 0. Mais alors, commex2+ 2xy-y2= 0,

on a en faitx=y= 0. C"est impossible car (0,0) n"appartient pas `aDf.fn"a donc pas d"extremum local surDf.

6.

On a vu que le cercle de cen tre( -1,-1) et de rayon⎷2 (priv´e du point (0,0)) est exactement la courbe de niveau

-2 def.fest donc constante sur ce cercle, tous les points sont donc des minima et maxima globaux defsous la

contrainte. 7. Calculons le d ´eterminantde la matrice hessienne en un p oint( x,y) deDf. On a rt-s2=4y2(x+y)3×4x2(x+y)3-?4xy(x+y)3? 2 = 0. On ´etudie alors le signe der. Celui-ci est du signe dex+y, donc positif surE1et n´egatif surE2.fest donc convexe surE1et concave surE2. 3 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017

Exercice 2.51

Une firme (en situation de monopole) produit un unique bien qui peut ˆetre vendu `a deux clientsaetb. Si la firme produit

la quantit´eQad"unit´es de bien pour le clienta, alors celui-ci est dispos´e `a payer le prix unitaire de 50-5Qa. Si la firme

produit la quantit´eQbd"unit´es de bien pour le clientb, alors celui-ci est dispos´e `a payer le prix unitaire de 100-10Qb.

Le coˆut pour la firme de produireQunit´es de bien est 90 + 20Q. 1. Que repr ´esentela fonction Π d ´efiniesur R+×R+par l"expression ci-dessous ? Π(Qa,Qb) =Qa(50-5Qa) +Qb(100-10Qb)-(90 + 20(Qa+Qb)) 2.

Si la firme v eutmaximiser son profit, quelle quan tit´ed ebien doit-elle pro duireet v endre` ac haqueclien t? Calculer

alors le profit maximal.

Corrig´e

1.

La fonction Π donne le profit de l"en trepriseen fonction des quan tit´espro duitese tv endues` ac haqueclien t.

2.

On p eutr ´e´ecrireΠ( Qa,Qb) =-5Q2a-10Q2b+ 30Qa+ 80Qb-90. On voit ainsi que Π est une fonction concave (en

appliquant par exemple le crit`ere sur les fonctions quadratiques, ou comme somme de deux fonctions concaves (par

le lemme d"extension) et d"une fonction affine qui est donc aussi concave). Tout point critique de Π sera donc un

point o`u Π a un maximum global. D´eterminons les points critiques.

On a∂Π∂Q

a(Qa,Qb) =-10Qa+ 30,∂Π∂Q b(Qa,Qb) =-20Qb+ 80.

Les deux d´eriv´ees partielles s"annulent enQa= 3,Qb= 4. Ce sont donc les quantit´es `a produire pour maximiser le

profit. Le profit maximal vaut alorsΠ =-5×32-10×42+ 30×3 + 80×4-90 = 115.

Exercice 2.52

On consid`ere la fonctionfd´efinie surR2parf(x,y) = (x2+y2)exp(-x). On admet qu"elle est de classeC2surR2.

1.

T rouverles extrema l ocauxd efsurR2.

2. Mon trerque fposs`ede un minimum global surR2et qu"elle ne poss`ede pas de maximum global.

Corrig´e

1. Calculons les d ´eriv´eespartielles d"ordre 1 et 2 de f. Pour tout (x,y)?R2, ∂f∂x (x,y) = 2xexp(-x)-(x2+y2)exp(-x) = (2x-x2-y2)exp(-x),∂f∂y (x,y) = 2yexp(-x) puis

2f∂x

2(x,y) = (2-2x)exp(-x)-(2x-x2-y2)exp(-x) = (x2+y2-4x+ 2)exp(-x),

2f∂x∂y

(x,y) =-2yexp(-x),∂2f∂y

2(x,y) = 2exp(-x).

Cherchons maintenant les points critiques. On a∂f∂y (x,y) = 0?2yexp(-x) = 0?y= 0 car l"exponentielle ne s"annule pas.

Il s"ensuit que

∂f∂x (x,y) = 0?(2x-x2-y2)exp(-x) = 0?x(2-x) = 0 cary= 0.

Les points critiques sont donc (0,0) et (-2,0). On applique les conditions du second ordre pour d´eterminer la nature

des points critiques. •En (0,0) : r= (02+ 02-4×0 + 2)exp(-0) = 2,s=-2×0exp(-0) = 0,t= 2exp(-0) = 2. On a alorsrt-s2= 2×2-02= 4>0. De plus,r= 2>0.fposs`ede donc un minimum local en (0,0). •En (2,0) : r= (22+ 02-4×2 + 2)e-2=-2e-2,s=-2×0e-2= 0,t= 2e-2. On a alorsrt-s2=-4e-4<0.fa donc un point selle en (2,0).

•On af(0,0) = 0, et on a clairementf(x,y)≥0 pour tout (x,y)?R2.fa donc un minimum global en (0,0).f

n"a en revanche pas de maximum global. En effet, si elle en avait un, celui-ci serait atteint en un point critique,

or aucun des deux points critiques ne donne de maximum local pourf, donc a fortiori pas de maximum global.

4 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017

Extrema li´es et exercices de synth`ese

Exercice 1.69

D´eterminer les extrema (locaux et globaux) des fonctionsfsuivantes sur leur domaine de d´efinition sous la contrainte

g(x,y) = 0.

2.f(x,y) =xy, g(x,y) =x2+y2-x-y(on fera ´egalement une r´esolution graphique).

5.f(x,y) = ln(x-y), g(x,y) =x2+y2-2.

6.f(x,y) =x2+y2, g(x,y) =x24

-y216 -1.

7.f(x,y) = 2x+y, g(x,y) =x2+xy-y2-1.

8.f(x,y) =1x

+1y , g(x,y) =1x 2+1y 2-12

9.f(x,y) =x2+y2+ (y-x)2, g(x,y) =x2+y2+ 2y-2x-6 = 0.

Corrig´e

2.fetgsont de classeC1surR2. On a, pour tout (x,y)?R2,g(x,y) = 0??

x-12 2 y-12 2 =12 L"ensembleEdes points satisfaisant la contrainte est donc le cercle de centre?12 ,12 et de rayon1⎷2

Pour optimiserfsous la contrainte de fa¸con g´eom´etrique, il faut d´eterminer les plus petit et plus grandk?Rtels

que la courbe de niveaukdefcoupe l"ensembleE, ou encore que cette courbe de niveau soit tangente au cercle.

Or, pourk?= 0, la courbe de niveaukest l"hyperbole d"´equationy=kx . On constate g´eom´etriquement qu"il semble

y avoir deux valeurs dekpour lesquelles l"hyperbole est tangente au cercle (courbes rouge et bleue).EOxy

•C •A •B V´erifions par le calcul le r´esultat obtenu.

•On cherche les points critiques de seconde esp`ece. On a, pour tout (x,y)?R2,?g(x,y) = (2x-1,2y-1)

qui ne s"annule qu"en?12 ,12 ?. Or ce point ne satisfait pas la contrainteg(x,y) = 0. Il n"y a donc pas de point critique de seconde esp`ece. •Cherchons les points critiques de premi`ere esp`ece. On pose, pour tout (x,y)?R2,L(x,y) =xy-λ(x2+y2-x-y).

R´esolvons?

?∂L∂x (x,y) = 0 ∂L∂y (x,y) = 0 g(x,y) = 0?? ?y-λ(2x-1) = 0 (1) x-λ(2y-1) = 0 (2) x

2+y2-x-y= 0 (3)

Effectuer (1) + 2λ(2) donne (1-4λ2)y+λ(1 + 2λ) = 0, soit (1 + 2λ)((1-2λ)y+λ) = 0, donc 1 + 2λ= 0 ou

(1-2λ)y+λ= 0.

Si 1 + 2λ= 0, soitλ=-12

, les relations (1) et (2) se r´e´ecriventy=12 -x. 5 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017

La troisi`eme relation s"´ecrit alorsx2+?12

-x? 2 -x-?12 -x? = 0 soit 2x2-x-14 = 0. Le discriminant de ce trinˆome est Δ = (-1)2-4×2×?-14 ?= 3>0. Il y a donc deux racines,x1=1-⎷3 4 etx2=1 +⎷3 4 . On en d´eduity1=12 -x1=1 +⎷3 4 ety2=12 -x2=1-⎷3 4

Siλ?=-12

, alors (1-2λ)y+λ= 0. Remarquons queλ?=12 : en effet, siλ=12 , (1) se r´e´ecrity-x+ 1 = 0

et (2) se r´e´ecritx-y+ 1 = 0, soit en sommant ces deux relations, 2 = 0 ce qui est impossible. On peut donc

diviser par (1-2λ), ce qui donney=-λ1-2λ. Il s"ensuit par (2) quex=λ(2y-1) =-λ1-2λ=y. La relation

(3) se r´e´ecrit alors 2x2-2x= 0 soitx(x-1) = 0, doncx= 0 oux= 1, et par suitey= 0 ouy= 1, avec

respectivementλ= 0 ou-λ1-2λ= 1 soitλ= 1.

Il y a donc quatre points critiques :A=?1-⎷3

4 ,1 +⎷3 4 (avecλ=-12 ),B=?1 +⎷3 4 ,1-⎷3 4 (avec

λ=-12

),O= (0,0) (avecλ= 0) etC= (1,1) (avecλ= 1).

•D´eterminons la nature des points critiques. On remarque queEest compact (il est ferm´e, et born´e car inclus

dans la boule ferm´ee de centre ( 12 ,12 ) et de rayon 1/⎷2). Commefest continue, elle admet un minimum global et un maximum global surE. Or on af(A) =f(B) =-18 ,f(O) = 0 etf(C) = 1.fa donc un minimum

global enAetBet un maximum global enD(ce qui confirme ce qui avait ´et´e observ´e g´eom´etriquement). On

constate par ailleurs (toujours g´eom´etriquement) quefest de signe n´egatif au voisinage deOsous la contrainte,

etf(O) = 0 :fa donc un maximum local enOsous la contrainte.

5.fetgsont d´efinies et de classeC1surU={(x,y)?R2,x-y >0}.

•Recherchons les points critiques de seconde esp`ece. On a, pour tout (x,y)? U,?g(x,y) = (2x,2y) qui ne

s"annule qu"en le point (0,0). Mais celui-ci ne satisfait pas la contrainteg(x,y) = 0, il n"y a donc pas de point

critique de seconde esp`ece.

•Recherchons les points critiques de premi`ere esp`ece. On poseL(x,y) = ln(x-y)-λ(x2+y2-2) le Lagrangien.

R´esolvons

??L(x,y) = (0,0) g(x,y) = 0?? ?1x-y-2λx= 0

1x-y-λy= 0

x

2+y2= 2??

?1-2λx(x-y) = 0 (1) -1-λy(x-y) = 0 (2) x

2+y2= 2 (3)

En effectuant (1) + (2), on trouve-λ(y+ 2x)(x-y) = 0 doncλ= 0 ouy=-2x(carx-y?= 0).

Siλ= 0, la premi`ere relation donne 1 = 0, impossible. Doncy=-2x. La troisi`eme relation donne alors

5x2= 2 doncx=?2

5 (x=-?2 5 est impossible car alorsx-y= 5x <0). La premi`ere relation donne alors

λ=12x(x-y)=110x2=14

. Il y a donc un seul point critique,A=? ?2 5 ,-2?2 5 avecλ=14 •On cherche `a d´eterminer sa nature. On a, pour tout (x,y)? U,L(x,y) = ln(x-y)-14 (x2+y2-2). Or : -(x,y)?→ln(x-y) est concave, comme compos´ee d"une fonction affine par une fonction concave. -(x,y)?→ -14 (x2+y2-2) est concave par les propri´et´es d"extension et d"addition. Lest donc concave comme somme de fonctions concaves.La donc un maximum global enA,fa donc un maximum global enAsous la contrainte.

6.fetgsont d´efinies et de classeC1surR2.

•Recherchons les ´eventuels points critiques de seconde esp`ece. On a, pour tout (x,y)?R2,?g(x,y) =?-12

x,-18

y?et celui-ci ne s"annule qu"en (0,0). Or ce point ne satisfait pas la contrainte, il n"y a donc pas de

point critique de seconde esp`ece. •Recherchons les points critiques de premi`ere esp`ece.

On pose, pour tout (x,y)?R2,L(x,y) =x2+y2-λ?14

x2-116 y2-1?. 6 Universit´e Paris-Dauphine L1 DEGEAD - Math´ematiques 2016 - 2017

R´esolvons

?∂L∂x (x,y) = 0 ∂L∂y (x,y) = 0 g(x,y) = 0?? ?x ?2-λ2 ?= 0 (1) y?2 +λ2 ?= 0 (2) x 24
-y216 = 1 (3) La premi`ere relation imposex= 0 ouλ= 4, et la seconde imposey= 0 ouλ=-4.

Six= 0, alors la troisi`eme relation donney2=-16 ce qui est impossible. Doncx?= 0 etλ= 4, et donc aussi

y= 0. La troisi`eme relation donnex2= 4 doncx=-2 oux= 2.

Il y a donc deux points critiques de premi`ere esp`ece :A= (-2,0) (avecλ= 4) etB= (2,0) (avecλ= 4).

•D´eterminons la nature de ces points critiques. Pourλ= 4, on aL(x,y) =x2+y2-4? x24 -y216 -1? 54
y2+4.

Lest donc une fonction convexe (par la propri´et´e d"extension).La donc un minimum global enAetB. Sous

la contrainte,fposs`ede donc un minimum global enAetB, de valeur 4.

7.fetgsont d´efinies et de classeC1surR2.

•Recherchons les points critiques de seconde esp`ece. On a, pour tout (x,y)?R2,?g(x,y) = (2x+y,x-2y) qui

ne s"annule qu"en le point (0,0). Mais celui-ci ne satisfait pas la contrainteg(x,y) = 0, il n"y a donc pas de

point critique de seconde esp`ece.

•Recherchons les points critiques de premi`ere esp`ece. On poseL(x,y) = 2x+y-λ(x2+xy-y2-1) le Lagrangien.

R´esolvons??L(x,y) = (0,0)

g(x,y) = 0?? ?2-2λx-λy= 0 (1)

1 + 2λy-λx= 0 (2)

x

2+xy-y2= 1 (3)

En effectuant (1)-2×(2), on trouve-5λy= 0 doncλ= 0 ouy= 0.

Siλ= 0, la premi`ere relation donne 2 = 0, impossible. Doncy= 0. La troisi`eme relation donne alorsx2= 1

doncx=-1 oux= 1, et la premi`ere (ou la deuxi`eme relation) donneλx= 1. Les points critiques de premi`ere

esp`ece sont doncA= (-1,0) avecλ=-1 etB= (1,0) avecλ= 1. •On cherche `a d´eterminer leur nature `a l"aide des crit`eres du second ordre.

On a, pour tout (x,y)?R2,∂2L∂x

2(x,y) =-2λ,∂2L∂x∂y

(x,y) =-λ,∂2L∂y

2(x,y) =λ.

8.fetgsont d´efinies et de classeC1surU={(x,y)?R2,x?= 0,y?= 0}.

•Recherchons les points critiques de seconde esp`ece.quotesdbs_dbs35.pdfusesText_40
[PDF] tp mps sciences et aliments

[PDF] mps sciences et art maths

[PDF] démontrer qu'une fonction est croissante sur un intervalle

[PDF] science et cosmétologie enseignement d exploration

[PDF] montrer qu'une fonction est croissante terminale s

[PDF] montrer qu'une fonction est croissante seconde

[PDF] démontrer qu'une fonction est croissante sur un intervalle donné

[PDF] tp mps svt

[PDF] site de recherche de personne gratuit

[PDF] fonction cube definition

[PDF] comment espionner quelqu un a distance

[PDF] tableau de signe fonction cube

[PDF] compte rendu mps seconde raisin

[PDF] mps seconde investigation policière scénario

[PDF] fonction racine cubique