[PDF] SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. SUITES ARITHMETIQUES. ET SUITES GEOMETRIQUES. I. Suites arithmétiques. 1) Définition.



SUITES ARITHMÉTIQUES ET SUITES GÉOMÉTRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



LES SUITES (Partie 1)

LES SUITES (Partie 1). I. Rappels et expression du terme général d'une suite arithmétique. 1) Exemple. On considère la liste des trois nombres suivants : –2 



Chapitre 2: Suites arithmétiques et suites géométriques

Démontrer que la suite (bn) est aussi une suite arithmétique ; quelle en est sa raison ? Page 4. 16 SUITES ARITHMETIQUES ET GEOMETRIQUES. CHAPITRE 2. 2MSPM – 



Formules concernant les suites arithmétiques et les suites

terme est u12 si le premier terme est noté u1. 5°) Formule permettant de calculer la somme des n premiers termes d'une suite arithmétique : a) S = nombre 



Chapitre 2: Suites arithmétiques et suites géométriques

est une suite géométrique calculer le somme des dix premiers termes. Page 10. 22 SUITES ARITHMETIQUES ET GEOMETRIQUES. CHAPITRE 2. 2MSPM G JtJ 2017.



A quoi servent les suites numériques ?

Exercice 4 : ( relire et mémoriser la propriété 2 du cours ). A) (Un) est une suite Arithmétique de 1 er terme U0 = 1000 et de raison r = 10. 1) Calculer la 



LES SUITES (PARTIE 2)

Si le premier terme est égal à 3 les premiers termes successifs sont : u0 = 3



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Suites arithmétiques. 1) Définition. Exemples : a) Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et 

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSUITES ARITHMETIQUES ET SUITES GEOMETRIQUES Vidéo https://youtu.be/pHq6oClOylU I. Suites arithmétiques 1) Définition Exemples : a) Considérons une suite numérique (un) où la différence entre un terme et son précédent reste constante et égale à 5. Si le premier terme est égal à 3, les premiers termes successifs sont : u0 = 3, u1 = 8, u2 = 13, u3 = 18. Une telle suite est appelée une suite arithmétique de raison 5 et de premier terme 3. La suite est donc définie par : 0

1 3 5 nn u uu

. b) Soit la suite numérique (vn) de premier terme 5 et de raison -2. Les premiers termes successifs sont : v0 = 5, v1 = 5 - 2 = 3, v2 = 3 - 2 = 1, v3 = 1 - 2 = -1. La suite est donc définie par :

v 0 =5 v n+1 =v n -2

. Définition : Une suite (un) est une suite arithmétique s'il existe un nombre r tel que pour tout entier n, on a : 1nn

uur

. Le nombre r est appelé raison de la suite. 2) Variations Propriété : (un) est une suite arithmétique de raison r. - Si r > 0 alors la suite (un) est croissante. - Si r = 0 alors la suite (un) est constante. - Si r < 0 alors la suite (un) est décroissante.

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDémonstration :

u n+1 -u n =u n +r-u n =r . - Si r > 0 alors u n+1 -u n >0 et la suite (un) est croissante. - Si r < 0 alors u n+1 -u n <0 et la suite (un) est décroissante. Exemple : La suite arithmétique (un) définie par u n+1 =u n -4 et u 0 =5

est décroissante car de raison négative et égale à -4. 3) Représentation graphique Les points de la représentation graphique d'une suite arithmétique sont alignés. Exemple : On a représenté ci-dessous la suite de raison -0,5 et de premier terme 4. II. Suites géométriques 1) Définition Exemples : a) Considérons une suite numérique (un) où le rapport entre un terme et son précédent reste constant et égale à 2. Si le premier terme est égal à 5, les premiers termes successifs sont : u0 = 5, u1 = 10, u2 = 20, u3 = 40. Une telle suite est appelée une suite géométrique de raison 2 et de premier terme 5. La suite est donc définie par :

u 0 =5 u n+1 =2u n b) Soit la suite numérique (vn) de premier terme 4 et de raison 0,1.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLes premiers termes successifs sont : v0 = 4 v1 = 0,1 x 4 = 0,4 v2 = 0,1 x 0,4 = 0,04 v3 = 0,1 x 0,04 = 0,004 La suite est donc définie par :

v 0 =4 v n+1 =0,1×v n

. Définition : Une suite (un) est une suite géométrique s'il existe un nombre q, strictement positif, tel que pour tout entier n, on a :

u n+1 =q×u n

. Le nombre q est appelé raison de la suite. Exemple concret : On place un capital de 500€ sur un compte dont les intérêts annuels s'élève à 4%. Chaque année, le capital est multiplié par 1,04. Ce capital suit une progression géométrique de raison 1,04. On a ainsi : u

1 =1,04×500=520 u 2 =1,04×520=540,80 u 3 =1,04×540,80=562,432

De manière générale : u

n+1 =1,04×u n avec u 0 =500

2) Variations Propriété : (un) est une suite géométrique de raison q et de premier terme u0 strictement positif. - Si q > 1 alors la suite (un) est croissante. - Si q = 1 alors la suite (un) est constante. - Si 0 < q < 1 alors la suite (un) est décroissante. Exemple : La suite géométrique (un) définie par

u 0 =5 u n+1 =0,5u n est décroissante car la raison est strictement inférieure à 1.

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr RÉSUMÉS (un) une suite arithmétique - de raison r - de premier terme u0 Exemple : r=-0,5

et u 0 =4

Définition

u n+1 =u n +r u n+1 =u n -0,5

La différence entre un terme et son précédent est égale à -0,5. Variations Si r > 0 : (un) est croissante. Si r < 0 : (un) est décroissante. r=-0,5<0

La suite (un) est décroissante. Représentation graphique Remarque : Les points de la représentation graphique sont alignés. (un) une suite géométrique - - de raison q > 0 - de premier terme u0 > 0 Exemple : q=0,5

et u 0 =5

Définition

u n+1 =q×u n u n+1 =0,5×u n

Le rapport entre un terme et son précédent est égal à 0,5. Variations Si q > 1 : (un) est croissante. Si 0 < q < 1 : (un) est décroissante. q=0,5<1

La suite (un) est décroissante. Représentation graphique Remarque : Si q < 0 : la suite géométrique n'est ni croissante ni décroissante. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs46.pdfusesText_46
[PDF] Les suites arithmétique ou géométriques

[PDF] Les suites arithmétiques

[PDF] les suites arithmétiques ? rendre jeudi

[PDF] Les suites arithmétiques avec sigma

[PDF] les suites Arithmétiques et géométrique DM

[PDF] les suites arithmétiques et géométriques

[PDF] Les suites arithmétiques et géométriques (2)

[PDF] Les suites arithmetiques geometriques

[PDF] Les suites arithmétiques ou géométriques

[PDF] Les suites avec relation de récurrence

[PDF] les suites ci-dessous sont-elles proportionnelles

[PDF] les suites cours pdf

[PDF] Les suites de nombres

[PDF] Les suites Devoir maison

[PDF] Les Suites Dm