[PDF] LES SUITES





Previous PDF Next PDF



COURS TERMINALE S LES SUITES NUMERIQUES

TERMINALE S. LES SUITES NUMERIQUES. A. Notation - Définition. Définition : une suite numérique (un) est une application de dans .



LES SUITES

- Si une suite décroissante est non minorée alors elle tend vers ?? . Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr.



Terminale ES - Suites géométriques

valeur de la voiture au bout de ? 1 années. Cette suite est géométrique : On passe d'un terme au suivant en multipliant toujours pas le même nombre (dans 



FICHE DE RÉVISION DU BAC

Programme selon les sections : - notion de suite représentation graphique



Limites de suites cours

http://mathsfg.net.free.fr/terminale/TS2011/suites/suiteslimitescoursTS.pdf





Terminale S - Etude dune limite de suite

Pour cela il faut prouver que tout intervalle de la forme ] A ; +? [ contient tous les termes de la suite ( ) à partir d'un certain indice. Soit A un nombre 



LES SUITES (Partie 1)

D'après le principe de récurrence elle est vraie pour tout entier naturel n



LES SUITES (Partie 2)

Démontrer par récurrence que la suite (un) est majorée par 3. Page 4. 4. Yvan Monka – Académie de Strasbourg – www.maths-et 



Terminale S Exercices suites numériques 2011-2012 1 Exercice 1

Terminale S. Exercices suites numériques. 2011-2012. 2. Exercice 8. On considère la suite u définie par u0 = 10 et pour tout entier naturel n

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLES SUITES Le raisonnement par récurrence Principe : Si la propriété P est : - vraie au rang n0 (Initialisation), - héréditaire à partir du rang n0 (Hérédité), alors la propriété P est vraie pour tout entier n ≥

n0. Limites Propriétés : - lim n→+∞ n=+∞ lim n→+∞ n 2 lim n→+∞ n=+∞ lim n→+∞ 1 n =0 lim n→+∞ 1 n 2 =0 lim n→+∞ 1 n =0 . Limite d'une somme : lim n→+∞ u n

L L L +∞

lim n→+∞ v n

L' +∞

()lim nn n uv

L + L' +∞

F.I.* Limite d'un produit :

lim n→+∞ u n

L L > 0 L < 0 L > 0 L < 0 +∞

0 lim n→+∞ v n

L' +∞

ou -∞ ()lim nn n uv

L L' +∞

F.I. Limite d'un quotient :

lim n→+∞ u n

L L L > 0 ou +∞

L < 0 ou -∞

L > 0 ou +∞

L < 0 ou -∞

0 +∞

ou -∞ lim n→+∞ v n

L'≠

0 +∞

ou -∞

0 avec

v n >0

0 avec

v n >0

0 avec

v n <0

0 avec

v n <0

0 L' > 0 L' < 0 L' > 0 L' < 0 +∞

ou -∞ lim n→+∞ u n v n L L'

0 +∞

F.I. +∞

F.I. Les quatre formes indéterminées sont, par abus d'écriture : "∞-∞

0×∞

" et " 0 0

". YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frSuite géométrique Formule de récurrence :

u n+1 =q×u n

Formule explicite :

u n =u 0 ×q n

Limite d'une suite géométrique : q

-11 lim n→+∞ q n pas de limite 0 1 +∞

Somme des termes d'une suite géométrique :

1+q+q 2 +...+q n 1-q n+1 1-q Limites et comparaison Théorèmes de comparaison : 1) Si, à partir d'un certain rang, u n n et lim n→+∞ u n alors lim n→+∞ v n . 2) Si, à partir d'un certain rang, u n ≥v n et lim n→+∞ u n alors lim n→+∞ v n . Théorème d'encadrement (théorème des gendarmes) : Si, à partir d'un certain rang, u n n n et lim n→+∞ u n =lim n→+∞ w n =L alors lim n→+∞ v n =L

. Suites majorées, minorées, bornées - (un) est majorée s'il existe un réel M tel que pour tout n,

u n . - (un) est minorée s'il existe un réel m tel que pour tout n, u n ≥m

. - (un) est bornée si elle est à la fois majorée et minorée. Théorème de convergence monotone : - Si une suite croissante est majorée alors elle est convergente. - Si une suite décroissante est minorée alors elle est convergente. Corollaire : - Si une suite croissante est non majorée alors elle tend vers +∞

. - Si une suite décroissante est non minorée alors elle tend vers -∞

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frCONTINUITÉ ET DERIVATION Limites Propriétés : -

lim x→+∞ x 2 lim x→-∞ x 2 lim x→+∞ x 3 lim x→-∞ x 3 lim x→+∞ x=+∞ lim x→+∞ 1 x =0 lim x→-∞ 1 x =0

Définitions : - La droite d'équation

x=A est asymptote verticale à la courbe représentative de la fonction f si lim x→A f(x)=+∞ ou lim x→A f(x)=-∞ . - La droite d'équation y=B est asymptote horizontale à la courbe représentative de la fonction f si lim x→+∞ f(x)=B ou lim x→-∞ f(x)=B peut désigner +∞ ou un nombre réel : Limite d'une somme lim x→α f(x)=

L L L +∞

lim x→α g(x)=

L' +∞

lim x→α f(x)+g(x)

L + L' +∞

F.I. Limite d'un produit

lim x→α f(x)=

L L > 0 L < 0 L > 0 L < 0 +∞

0 lim x→α g(x)=

L' +∞

ou -∞ lim x→α f(x)g(x)

L L' +∞

F.I. Limite d'un quotient

lim x→α f(x)=

L L L > 0 ou +∞

L < 0 ou -∞

L > 0 ou +∞

L < 0 ou -∞

0 +∞

ou -∞ lim x→α g(x)=

L'≠

0 +∞

ou -∞

0 avec

g(x)>0

0 avec

g(x)>0

0 avec

g(x)<0

0 avec

g(x)<0

0 L' > 0 L' < 0 L' > 0 L' < 0 +∞

ou -∞ lim x→α f(x) g(x) L L'

0 +∞

F.I. +∞

F.I. Limites et comparaisons Théorèmes de comparaison : Si et : - Si lim x→+∞ f(x)=+∞ alors lim x→+∞ g(x)=+∞ - Si lim x→+∞ g(x)=-∞ alors lim x→+∞ f(x)=-∞ - Si lim x→-∞ f(x)=+∞ alors lim x→-∞ g(x)=+∞ - Si lim x→-∞ g(x)=-∞ alors lim x→-∞ f(x)=-∞

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frThéorème d'encadrement (théorème des gendarmes) : Si

et : Si lim x→+∞ f(x)=L et lim x→+∞ h(x)=L alors lim x→+∞quotesdbs_dbs46.pdfusesText_46
[PDF] les suites en ts

[PDF] Les suites et e

[PDF] Les suites et encadrement

[PDF] Les suites et la convergence

[PDF] Les suites et la récurrence

[PDF] Les suites et les fonctions

[PDF] Les suites et raisonnement par récurrence

[PDF] Les suites et récurrences

[PDF] Les suites excercice

[PDF] les suites exercice

[PDF] les suites exercices corrigés

[PDF] les suites exercices corrigés 1ere s

[PDF] Les suites géo/arithm

[PDF] les suites geometrique

[PDF] Les suites géométriques