[PDF] DROITES DU PLAN Partie 1 : Vecteur directeur et é





Previous PDF Next PDF



VECTEURS ET DROITES

On appelle vecteur directeur de D tout vecteur non nul u ! qui possède la même direction que la droite D. 2) Equation cartésienne d'une droite.



I Colinéarité de deux vecteurs II Équations de droites

2) Équation cartésienne d'une droite. Propriété. Toute droite D admet une équation de la forme ax + by + c = 0 avec(a;b) = (0; 0). Un vecteur directeur de D 



Première S - Equations cartésiennes dune droite

Toute droite possède une infinité de vecteurs directeurs. Remarque : Soit un vecteur directeur de la droite (d).Tout vecteur non nul et colinéaire au vecteur 



REPRÉSENTATIONS PARAMÉTRIQUES ET ÉQUATIONS

Équation cartésienne d'un plan. Théorème : L'espace est muni d'un repère orthonormé % ; ? ?



III. Espaces vectoriels

La description du sous-espace vectoriel F par un syst`eme d'équations cartésiennes permet de tester facilement si un vecteur donné appartient `a F.



Chapitre 4 - Equation cartésienne dune droite et vecteur directeur

Equation cartésienne d'une droite et vecteur directeur. Dans ce chapitre nous poursuivons notre étude du calcul vectoriel. A nouveau dans ce qui suit



Méthodes de géométrie dans lespace Déterminer une équation

L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D' 



DROITES DU PLAN

Partie 1 : Vecteur directeur et équation cartésienne d'une droite. 1. Vecteur directeur. Définition : d. est une droite du plan. On appelle vecteur 



Méthodes relatives aux équations de droites Déterminer une

Déterminer une équation cartésienne de la droite (AB) . (AB) est la droite passant par A et de vecteur directeur ?. AB donc un point M(x ; y) appartient 



GÉOMÉTRIE REPÉRÉE

On appelle vecteur normal à une droite d un vecteur non nul orthogonal à un vecteur directeur de d. Exemple : Soit la droite d d'équation cartésienne 2 ? 3  

1 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

DROITES DU PLAN

Tout le cours en vidéo : https://youtu.be/d-rUnClmcCY Partie 1 : Vecteur directeur et équation cartésienne d'une droite

1. Vecteur directeur

Définition : d

í µ est une droite du plan. On appelle vecteur directeur de í µ tout vecteur non nul 𝑢⃗ qui possède la même direction que la droite í µ. Méthode : Déterminer graphiquement un vecteur directeur d'une droite

Vidéo https://youtu.be/6VdSz-0QT4Y

Donner des vecteurs directeurs des

droites d 1 , d 2 , d 3 et d 4

Correction

• Pour d 1 On choisit un vecteur qui possède la même direction que la droite d 1

Par exemple : í µâƒ—í±Ž

1 2 ) convient. 2 4 ) ou í µâƒ—í±Ž -1 -2 ) sont également des vecteurs directeurs de d 1 • Pour d 2 6 0 ) convient. • Pour d 3 1 -1 ) convient. • Pour d 4 0 2 ) convient.

2. Équation cartésienne d'une droite

Définition :

Toute droite admet une équation de la forme í µí µ+í µí µ+í µ=0, avec 0;0 Cette équation est appelée équation cartésienne de la droite.

2 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Propriété : Le vecteur í µí±¢âƒ—í±Ž ) est un vecteur directeur de la droite d'équation cartésienne í µí µ+í µí µ+í µ=0.

Démonstration au programme :

Vidéo https://youtu.be/GVDUrdsRUdA

Soit 𝑎

) un point de la droite í µ et í µí±¢âƒ—í±Ž ) un vecteur directeur de í µ.

Un point 𝑎

) appartient à la droite í µ si et seulement si les vecteurs í µí µ ) et í µí±¢âƒ—í±Ž sont colinéaires, soit í µí µí µí±¡í µí µ ;𝑢⃗B=0 soit encore C C=0.

Donc : í µ

=0 =0 =0

Cette équation peut s'écrire : í µí µ+í µí µ+í µ=0 avec í µ=í µ et í µ=-í µ et í µ=í µí µ

Les coordonnées de 𝑢⃗ sont donc í±Ž Exemple : Un vecteur directeur de la droite d'équation cartésienne 4í µ-5í µ-1=0 est le vecteur de coordonnées í±Ž 5 4

En effet, í µ=4 et í µ=-5 donc í±Ž

5 4

Méthode : Déterminer une équation cartésienne de droite à partir d'un point et d'un vecteur

directeur

Vidéo https://youtu.be/NosYmlLLFB4

Vidéo https://youtu.be/i5WD8IZdEqk

a) Déterminer une équation cartésienne de la droite í µ passant par le point 𝑎

3 1 ) et de vecteur directeur í µí±¢âƒ—í±Ž -1 5

b) Déterminer une équation cartésienne de la droite í µâ€² passant par les points 𝑎

5 3 ) et 𝑎 1 -3

Correction

a) í µ admet une équation cartésienne de la de la forme í µí µ+í µí µ+í µ=0. • Comme 𝑢⃗ í±Ž -1 5 ) est un vecteur directeur de í µ, on a : í±Ž -1 5

Soit í µ=5 et í µ=1.

Une équation de í µ est donc de la forme 5í µ+1í µ+í µ=0.

3 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr • Pour déterminer í µ, il suffit de substituer les coordonnées í±Ž 3 1 ) de í µ dans l'équation :

5×3+1×1+í µ=0

15+1+í µ=0

16+í µ=0

í µ=-16 Une équation de í µ est donc 5í µ+1í µ-16=0. Remarque : Une autre méthode consiste à utiliser le déterminant :

Vidéo https://youtu.be/rLxQIbQkPsQ

b) í µ et í µ appartiennent à í µ' donc í µí µ est un vecteur directeur de í µâ€².

On a : í µí µ

1-5 -3-3 -4 -6 ). Donc í µ=-6 et í µ=4. Une équation cartésienne de í µâ€² est de la forme : -6í µ+4í µ+í µ=0. 5 3 ) appartient à í µâ€² donc : -6×5+4×3+í µ=0 donc í µ=18.

Une équation cartésienne de í µâ€² est : -6í µ+4í µ+18=0 ou encore -3í µ+2í µ+9=0.

Méthode : Tracer une droite à partir de l'équation cartésienne

Vidéo https://youtu.be/EchUv2cGtzo

Tracer la droite í µ d'équation cartésienne 3í µ+2í µ-5=0.

Correction

Pour tracer une droite, il suffit de connaître un point appartenant à la droite et un vecteur directeur. • On choisit le point d'abscisse 0 : Comme í µ=0, on remplace í µpar 0 dans l'équation et on calcule la valeur de í µ correspondante :

3×0+2í µ-5=0

2í µ=5

5 2 =2,5

Le point í µde coordonnées í±Ž

0 2,5 ) appartient à la droite í µ. • í µ=3 et í µ=2 donc í±Ž -2 3 -2 3 ) est un vecteur directeur de í µ. On trace la droite í µ passant par le point 𝑎 0 2,5 ) et de vecteur directeur 𝑢⃗ í±Ž -2 3

4 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

3. Position relative de deux droites

Propriété :

Dire que deux droites sont parallèles équivaut à dire qu'elles ont des vecteurs directeurs colinéaires. Méthode : Déterminer la position relative des deux droites

Vidéo https://youtu.be/NjsVdVolhvU

Démontrer que les droites í µ

et í µ d'équations respectives 6í µ-10í µ-5=0 et -9í µ+15í µ=0 sont parallèles.

Correction

Le vecteur í µí±¢âƒ—í±Ž

10 6 ) est un vecteur directeur de la droite í µ

Le vecteur í µâƒ—í±Ž

-15 -9 ) est un vecteur directeur de la droite í µ

Calculons í µí µí µ

=C 10-15 6-9

C=10×

-9 -6× -15 =0 Donc 𝑢⃗ et í µâƒ— sont colinéaires et donc les droites í µ et í µ sont parallèles. Partie 2 : Équation réduite et pente d'une droite

1. Équation réduite

Exemple : Soit í µ dont une droite d'équation cartésienne 4í µ+í µ-6=0.

On a alors : 4í µ+í µ=6

í µ=-4í µ+6 Cette équation est appelée l'équation réduite de la droite í µ.

Propriété :

Soit une droite í µ.

- Si í µ est parallèle à l'axe des ordonnées : alors l'équation de í µ est de la forme í µ=í µ. - Si í µ n'est pas parallèle à l'axe des ordonnées : alors l'équation de í µ est de la forme í µ=í µí µ+í µ. Cette équation est appelée équation réduite de la droite í µ.

5 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr

Démonstration :

• Si í µâ‰ 0, alors l'équation cartésienne í µí µ+í µí µ+í µ=0 de la droite í µ peut être ramenée à une

équation réduite í µ=-

. Et on note í µ=- et í µ=-

• Si í µ=0, alors l'équation cartésienne í µí µ+í µí µ+í µ=0 de la droite í µ peut être ramenée à

l'équation í µ=- . Dans ce cas, la droite í µ est parallèle à l'axe des ordonnées.

Exemples :

• L'équation í µ=-4í µ+6 est l'équation réduite d'une droite avec : í µ=-4 et í µ=6.

• L'équation í µ=5 est l'équation d'une droite parallèle à l'axe des ordonnées avec :

í µ=5.

Méthode : Passer d'une équation cartésienne à l'équation réduite et réciproquement

Vidéo https://youtu.be/XA0YajthETQ

a) Soit la droite í µ d'équation cartésienne 6í µ+3í µ-5=0. Déterminer l'équation réduite de í µ.

b) Soit la droite í µ' d'équation réduite í µ=6í µ-5. Déterminer une équation catésienne de í µâ€².

Correction

a) On veut exprimer l'équation sous la forme í µ=í µí µ+í µ. Il s'agit donc d'isoler í µ dans l'équation.

6í µ+3í µ-5=0

3í µ=-6í µ+5

-6í µ+5 3 í µ=-2í µ+ : équation réduite de í µ.

b) On veut exprimer l'équation sous la forme í µí µ+í µí µ+í µ=0. Il s'agit donc de ramener tous les

termes de l'équation dans le membre de gauche. í µ=6í µ-5 -6í µ+í µ+5=0 : équation cartésienne de í µ'. Vocabulaire : - í µ est appelé la pente ou le coefficient directeur de la droite í µ. - í µ est appelé l'ordonnée à l'origine de la droite í µ. Remarque : Dans l'équation réduite, on retrouve l'expression d'une fonction affine.

Exercice :

6 sur 10

Yvan Monka - Académie de Strasbourg - www.maths-et-tiques.fr Donner la pente (coefficient directeur) et l'ordonnée à l'origine de chacune des droites d'équations : a) í µ=-2í µ+3 b) í µ=5 c) 4í µ+2í µ=1

Réponses

a) Pente : -2 b) Pente : 0quotesdbs_dbs46.pdfusesText_46
[PDF] Les vecteur et la relation de Chasles

[PDF] Les vecteur n°3

[PDF] Les vecteurs

[PDF] Les vecteurs ! AIDEZ MOI SVP

[PDF] LES VECTEURS ( alignement de points)

[PDF] les vecteurs ( j'ai reposté l enoncé car je mettez trompé dedans)

[PDF] LES VECTEURS (alignement de points)

[PDF] Les vecteurs (distance, colinéarité, algorithme )

[PDF] LES VECTEURS (exercice basique)

[PDF] Les Vecteurs (pour demain)

[PDF] Les vecteurs (premieres s )

[PDF] Les Vecteurs (Puissance d'un point par rapport ? un cercle)

[PDF] Les vecteurs , démonstration des droites parallèles

[PDF] Les vecteurs , translation

[PDF] Les vecteurs - démontrer sans repere