[PDF] I) Développements limités usuels





Previous PDF Next PDF



Développements en séries entières usuels

retrouver les développements de nombreuses fonctions usuelles. L'exponentielle ln(1 + x) = +∞. ∑ n=1. (-1)n+1xn n pour



La fonction logarithme népérien

3 déc. 2014 Conclusion : la fonction ln est dérivable sur ]0; +∞[ et (ln x)′ = 1 x . 3.2 Limite en 0 et en l'infini. Théorème 6 : On a les limites ...



fonctions-usuelles.pdf

pour limite +∞. Donc : lim x→+∞ lnx = +∞. 3. lim x→0. (lnx) = lim x→+∞ ln(. 1 x. ) (ln◦exp) (x) = ln exp(x) .exp (x) = 1. Paris Descartes. 2012 — 2013.



FICHE : LIMITES ET ÉQUIVALENTS USUELS

FICHE : LIMITES ET ÉQUIVALENTS USUELS. Limites usuelles lnx x. −−−−−→ x→+∞. 0 x lnx −−−−−→ x→0+. 0 ln(x) x −1. −−−→ x→1. 1 ln(1+ x) x.



FONCTION LOGARITHME NEPERIEN FONCTION LOGARITHME NEPERIEN

Remarque : Les fonctions puissances imposent leur limite devant la fonction logarithme népérien. Propriétés : ( ). 0 ln 1 lim. 1 x x x. →. +. = Démonstration 





Tableau des limites de ln et exponentielle Tableau des limites de ln et exponentielle

FICHE : LIMITES ET ÉQUIVALENTS USUELS. Limites usuelles lnx x. ?????? x?+?. 0 x lnx ?????? x?0+. 0 ln(x). Comparaison de la fonction logarithme avec la 



Développements limités usuels

Développements limités usuels. Les développements limités ci-dessous sont ln(1 + x) = x→0 x − x2. 2. + ... + (−1)n−1 xn n. + o(xn) = x→0 n. ∑ k=1.



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +∞ et en 0. En + ∞ lim x→+∞ ln(x) x. = 



formulaire.pdf

lim x→+∞ ex/x = +∞ lim x→+∞ ln(x)/x = 0 lim x→−∞ xnex = 0 lim x→+∞ ex/xn = +∞ lim x→+∞ ln(x)/xn = 0. Dérivées. Fonctions usuelles Fonctions 



formulaire.pdf

lim x??? xnex = 0 lim x?+? ex/xn = +? lim x?+? ln(x)/xn = 0. Dérivées. Fonctions usuelles Fonctions usuelles. R`egles de dérivation. Exemples.



FICHE : LIMITES ET ÉQUIVALENTS USUELS

Lycée Blaise Pascal. TSI 1 année. FICHE : LIMITES ET ÉQUIVALENTS USUELS. Limites usuelles lnx x. ?????? x?+?. 0 x lnx ?????? x?0+. 0 ln(x).



Fiche technique sur les limites

Comparaison de la fonction logarithme avec la fonction puissance en +? et en 0. En + ? lim x?+? ln(x) x. = 



Développements limités usuels

Développements limités usuels. Les développements limités ci-dessous sont valables quand x tend vers 0 et uniquement dans ce cas. ln(1 + x) =.



FONCTION LOGARITHME NEPERIEN

La fonction ln est continue sur 0;+????? donc pour tout réel a > 0



Exponentielle et logarithme

lim x??? ex = 0+ lim x?+? ex = +?. Fonction logarithme f(x) = ln(x) définie sur ]0; +? [ à valeurs dans R ln(1) = 0 ln(e)=1. (ln(x))? =.



I) Développements limités usuels

Tous les DL usuels suivants sont au voisinage de x = 0. Les développements limités se regroupent presque tous en deux familles. ln(1 + x) = x ?.



Développements limités usuels en 0

Développements limités usuels en 0 ln(1 ? x) = ?x ? ... II Fonctions usuelles. Fonction. Primitive. Intervalles ln x x(ln x ? 1). ] 0 ; +? [.



La fonction logarithme népérien

3 déc. 2014 Conclusion : la fonction ln est dérivable sur ]0; +?[ et (ln x)? = 1 x . 3.2 Limite en 0 et en l'infini. Théorème 6 : On a les limites ...



Développements limités

développements limités des fonctions usuelles. FiGURe 5 – Fonction ln et ses polynômes de Taylor en 0 jusqu'à l'ordre n = 5.

Fiche : DL

I) Développements limités usuels

Tous les DL usuels suivants sont au voisinage dex= 0Les développements limités se regroupent presque tous en deux familles.

A) Famille exponentielle

exp(x) = 1 +x+x22! +x33! +x44! +...+xnn!+o(xn)(Taylor) ch(x)= 1 + x22! +x44! +...+x2n(2n)!+o(x2n)(c h(x) =partie paire deex) sh(x)= x+x33! +...+x2n+1(2n+ 1)!+o(x2n+1)(sh (x) =partie impaire deex) cos(x) = 1-x22! +x44! +...+ (-1)nx2n(2n)!+o(x2n) (cos(x) =?(eix)) sin(x) =x-x33! +...+ (-1)nx2n+1(2n+ 1)!+o(x2n+1) (sin(x) =?(eix))

B) Famille géométrique

11-x= 1 +x+x2+...+xn+o(xn)(série géométrique)

11 +x= 1-x+x2+...+ (-1)nxn+o(xn)(en remplaçantxpar-x)

ln(1-x) =-x-x22 -x33 +...-xn+1n+ 1+o(xn+1)(en intégrant la série géométrique) ln(1 +x) =x-x22 +x33 +...+ (-1)nxn+1n+ 1+o(xn+1)(au choix)

Arctan(x) =x-x33

+x55 +...+ (-1)nx2n+12n+ 1+o(x2n+1)

Le dernier s"obtient en remplaçantxparx2dans la série géométrique alternée puis en intégrant, car

Arctan

?(x) =11 +x2.

C) Autres

(1 +x)α= 1 +αx+α(α-1)2!

x2+···+α(α-1)···(α-n+ 1)n!xn+o(xn)S"obtient directement avec la formule de Taylor :

dkdxk(1 +x)α=α(α-1)···(α-k+ 1)(1 +x)α-k

Moyen mnémotechnique : ressemble à une formule du binôme (et coïncide avec le binôme lorsqueα?N).

Cas important :α=±12

. On en déduit le DL deArcsin(x). tan(x) =x+x33 +o(x3)S"obtient soit à partir detan =sincos , soittan(x)≂xpuistan?= 1 + tan2. Pas de formule générale. 1 FicheDLII) Rappels des propriétés générales Propriété 1 (Taylor-Young)Soitn?N. Soitf?Cn(I,R)eta?I.

Alors?x?I

f(x) =f(a) + (x-a)f?(a) +···+(x-a)nn!f(n)(a) +o?(x-a)n?

Preuve : cf cours PTSI.

Remarque 1Fréquemment,a= 0:

f(x) =f(0) +xf?(0) +...xnn!f(n)(0) +o(xn) Propriété 2Un développement limité s"intègre terme à terme sans problème.

Propriété 3

Le DL d"une fonctionfpaire ne contient que des puissances paires. Le DL d"une fonctionfimpaire ne contient que des puissances impaires. 2quotesdbs_dbs10.pdfusesText_16
[PDF] limite logarithme népérien en 0

[PDF] limite logarithme népérien et exponentielle

[PDF] limite math

[PDF] limite math forme indéterminée

[PDF] limite math tableau

[PDF] limite polynome en 0

[PDF] limite polynome terme plus haut degré

[PDF] Limite quanx x tend vers +oo

[PDF] limite racine carré en 0

[PDF] limite racine carré forme indéterminée

[PDF] limite sinus en l'infini

[PDF] limite somme suite géométrique

[PDF] limite suite

[PDF] limite suite définie par récurrence

[PDF] limite suite géométrique