[PDF] Révision des équivalents et des développements limités I. Rappels





Previous PDF Next PDF



Chapitre 10 - Équivalents La notion de fonctions équivalentes est un

La notion de fonctions équivalentes est un outil simple d'une grande efficacité pour calculer des limites. De plus la notion a un intérêt en tant que telle 



Limites et équivalents

On considère dans cette partie une fonction f définie sur son domaine de définition Df . On dit que la fonction f admet pour limite finie l en x0 si :.



Poly fonctions R dans R Tout les methodes

Comment calculer la limite L (œ R ou = ±Œ) d'une fonction f en ±Œ ? . Comment déterminer l'équivalent d'une fonction f en un point x0 ou en ±Œ ? .



Analyse Asymptotique 1 : - Les Relations de comparaison —

13 janv. 2018 d'un équivalent est de remplacer une fonction par une autre fonction plus simple. ... Comment faire pour trouver un équivalent de ln un ?



TECHNIQUES & MÉTHODES S18 LIMITE DUNE FONCTION

1 sept. 2011 fonctions usuelles et les relations de comparaisons entre ces fonctions usuelles. 1. Page 2. ÉQUIVALENT D'UNE FONCTION. Comment obtenir un ...



Ex 1 Facile Trouver un équivalent lorsque x ? 1 de la fonction

Trouver un équivalent lorsque x ? 1 de la fonction définie par f(x) = ex2+1 ? e3x?1. Ex 2. Facile. Déterminer la limite lorsque x ? +? de la fonction 



Suites et équivalents

1. la définition explicite permettant le calcul de un en fonction de n; Autrement dit trouver un équivalent simple de la suite.



Développements limités et asymptotiques

Nous allons à présent voir sur deux exemples comment obtenir le développement asymptotique d'une fonction au voisinage de l'infini. 3.1 Développements 



Révision des équivalents et des développements limités I. Rappels

ne vous demandera jamais de trouver un équivalent de la fonction nulle. Les exemples donnés ici montrent comment accélérer le calcul d'un dévelop-.



Compléments sur les suites et les séries

Méthode 1.17 : Comment trouver un équivalent directement? Soit f une fonction définie sur une partie A de R et (un)n?N une suite de réels de A définie ...



[PDF] Chapitre 10 - Équivalents La notion de fonctions équivalentes est un

Pour trouver un équivalent de tan on remarque que comme cosx ? 1 quand x ? 0 cosx ? 1 et donc tan x ? x/1 = x En multipliant les équivalents on a donc 



[PDF] Limites et équivalents

On dit que f est définie au voisinage de ?? s'il existe un réel b tel que ] ? ?b] ? Df Exemple : Soit g : x ?? ? ln(x ? 8) Cette fonction est 



[PDF] Chapitre6 : Comparaison de fonctions

En pratique on dit plutôt que f(x) est équivalent à g(x) au voisinage de a et cela signifie donc qu'il existe une fonction ? de D dans R et qui tend vers 0 



[PDF] Ex 1 Facile Trouver un équivalent lorsque x ? 1 de la fonction

Trouver un équivalent lorsque x ? 1 de la fonction définie par f(x) = ex2+1 ? e3x?1 Ex 2 Facile Déterminer la limite lorsque x ? +? de la fonction 



[PDF] Révision des équivalents et des développements limités - PAESTEL

La méthode la plus utilisée pour trouver un équivalent d'une fonction f est de chercher une fonction g non nulle au voisinage de x0 x0 exclu telle que



[PDF] Équivalents et Développements (Limités et Asymptotiques)

Deux fonctions f et g sont dites équivalentes en x0 ? R si et seulement si lim Déterminer proprement un équivalent simple en +? de (ln(1 + x)



[PDF] Analyse Asymptotique 1 : - Les Relations de comparaison —

13 jan 2018 · Pour déterminer la limite d'une fonction on pourra ainsi rechercher un équivalent simple de la fonction Pour cela nous pourrons utiliser les 



[PDF] FICHE : LIMITES ET ÉQUIVALENTS USUELS

Comparaison des fonctions usuelles Soient ? ? et ? des réels strictement positifs • En +? : (lnx)? = o x?+?( 



[PDF] Introduction aux calculs de limites équivalents et développements

Exercice 3 Avec les outils/techniques de terminale déterminer lim On traitera en parall`ele la question des limites de suites ou de fonctions



[PDF] Corrigé TD 3 Exercice 1

Pour obtenir la relation d'équivalence il faut que la différence soit de ox0(f (x0)·(x?x0)) : c'est bien le cas si f (x0) = 0 2 Même si ce n'est pas demandé 

  • Comment trouver l'équivalent d'une fonction ?

    On dit que f est équivalente `a g quand t ? a lorsqu'il existe un réel ? > 0 et une fonction h de [a? ?, a+ ?]?D vers R telle que pour t dans cet intervalle, f(t) = h(t)g(t) et que h(t) tende vers 1 quand t ? a.
  • Comment montrer un equivalent ?

    Pour montrer une équivalence en raisonnant par équivalences, il faut justifier si nécessaire les équivalences écrites à chaque étape. Si l'ombre d'un doute plane, il faut démontrer l'équivalence demandée en raisonnant par double implication. On sait que P est vraie, et on déduit que Q est vraie.
  • Comment comparer deux fonctions ?

    Pour comparer deux fonctions définies par f(x) et g(x): - on calcule f(x) - g(x), en simplifiant autant que possible l'expression. - on réalise le tableau de signes du résultat (revoir les signes des fonctions affines et des trinômes ).
  • On dit que f est négligeable devant g si la fonction fg tend vers 0 en a. On note f=ao(g) ou f(x)=ao(g(x)).
????x02R[f1;+1g??? ????? ??????[1;+1]?? ???? ?? ?????? ?? ???? x2]x0r;x0+r[nfx0g???? ?? ???????r >0;??x02R??? x2]1;A[???? ?? ???????A2R? ??x0=1? x2]A;+1[???? ?? ???????A2R? ??x0= +1? lim x!x

0h(x) =`???? ?? ??? ??`2R???`2C? ?

[8" >0;9 >0;8x2]x0r;x0[; x0 < x < x0) jh(x)`j< "]: x!x+

0h(x) =l????? ??? ???? ?????

??lim x!x

0h(x) =1:

?????? ??x0?? ?? ??? ???? ?????? ??x0? ????`2[1;+1]??`2C? ]x0r;x0+r[nfx0g? ?? ???? ???h???? ????l???????x???? ????x0? lim x!x

0h(x) =l??lim

x!x+

0h(x) =l;

8" >0;9 >0;8x2]x0r;x0+r[;0 x!x

0h(x) =l?

x!x+

0h(x) =l?

??????? ?????h?????? ???h(x) = 0??x6= 0??h(0) = 1? lim lim BY: C x lim ???? ?? ??? ??f??g???? ??????? ??x0? ?? ??????? ?? ???? ??? fx0g,8 :lim x!x0x6=x0f(x)g(x)= 1 (f(x0) =g(x0)??f??g???? ??????? ??x0?? ?? ?? ???? ??????? ??? ?????(wn)?????? ????n????? ????? ????? ??? ? lim u n+1vn,limn!+1u nv n= 1: lim BY: C f?????? ???R+???f(x) =xx+ 1? ???? ??????1??+1????f+11? ??? sinx0x? tanx0x?1cosx0x 22
ln(1 +x)0x? e x10xln(x)1x1? ????2R: (1 +x)10x: ??P(x) =adxd+ad+1xd+1++anxn????ad6= 0??an6= 0?(d;n)2N2??? f(x)f(x0)x0f0(x0)(xx0): ??fx0g?? ??limx!x0x6=x0f(x) =l(l2[1;+1]??l2C)?????limx!x0x6=x0g(x) =l BY: C x x ????fg?? ????fg ?? ?? ???? ??? ?? ????? ????f+g? f(x) =xx2??g(x) =x+x3? ?? ? ?????f0x?0x??0x2? ??fx0g? ??2R??n2N?????fnx0gn??jfjx0jgj? ln(1 +x)0x?? ????? ? ??fx0g;????? ??????? ???? ?'fx0'g? ?? ??????? ? ???????f(x) =1x+x2??g(x) =1x ?????f0g????x!ef(x)?? f(x)g(x)=xx+x2=11 +x!x!01????f0g: BY: C exp(f(x))exp(g(x))=ef(x)g(x)=e1x+x21x

1x+x21x

=x2x(x+x2)=11 +x!x!01 ??????? ? ???un+1vn?? ??limn!+1un= +1?????lnun+1lnvn? ?? ???? ? u ?? ???? ???? ??????? ????n????? ????? ? lnunlnvn=lnu nv n + ln(vn)ln(vn)=lnu nv nln(vn)+ 1: ??limn!+1lnu nv n = 0??limn!+1ln(vn) = +1? ???? ?limn!+1lnunlnvn= 1?? ????lnun+1lnvn? ??f(x) =sinxtanx(?x1)2 ??f(x) =sinx+ cosxtanx1x 2 ??f(x) =cosxpcos(2x)sin

2(x)??f(x) =?sin(2x)?sin(x)tanx

??f(x) =?2xln(?+x)x

3+ sin(x)cos(x)

??f(x) =(ln(cosx))2x(sinxtanx) ??a >0?f(x) =pxpa+pxapx BY: C ??a= 1?f(x) =1x1p1cos(x2 ??a=3 ?f(x) =sin(x)p3cos(x)2cos(x)1 y=xx36 +x5120 ?? ?? ?????y=xx36 +x5120 +x75040 ?xy 2 21
10 lim ???? ?? ??? ??f??g???? ??????? ??x0? ?? ??????? ?? ???? ??? f(x0) = 0: lim BY: C u ????n????? ????? ????? ??? ? ? lim u n=+1o(vn),limn!+1u nv n= 0: lim x!x0x6=x0"(x) = 0: ?? ? ???? ?limx!x0x6=x0o(1) = 0: x BY: C ??f1=x0o(g)?? ??f2=x0o(g)?????f1+f2=x0o(g)??? ???? ???? ??? ????p2N??n2N? ?? ? ?xn+p=x!0o(xn)??xno(xp) =x!0o(xn+p): ????? ??????? ?? ?? ?????? ??0?? ?? ??????? ??x(lnx)? ?????x ??? ?????? ?? ?????? ???6= 0?? ????? ??????? ?? ?? ?????? ?? ??????? ??xex? ?????ex??? ?????? ?? ??b??? ???? ?

8" >0;9 >0;b < x < b=) jf(x)j< "jg(x)j

8" >0;9 >0;b < x < b=) jf(x)g(x)j< "jg(x)j

??b= +1?

8" >0;9A >0;x > A=) jf(x)j< "jg(x)j

BY: C ??f??? ? ??????? ????C?a0;:::;an???? ??? ???? ????x????U? f(x) =a0+a1(xx0) ++an(xx0)n+o((xx0)n):() f(x0) =a0: o x!x0((xx0)n): a ?????U= ]x0;x0+"[???? ?? ???????" >0? ?? ??? ???f????? ?? ????? ??????U= [x0;x0+"[???? ?? ???????" >0? ?? ??? ???f????? ?? ????? ??????U= ]x0";x0+"[nfx0g???? ?? ???????" >0? ?? ??? ???f????? ?????U= ]x0";x0+"[???? ?? ???????" >0? ?? ??? ???f????? ?? ?????DL3(0)??sin??? ?sinx=xx36 +ox3? ??DL??? ??????? ????x BY: C ?????? ?? ??????? ????x6= 0?sinxx = 1x26 +ox2? ?? ?????? ????DL2(0) ?? ????]";"[nf0g?" >0? ?? ?? ????? ??? ??????? ??x= 0????sinxx ????? ??? ????? ??0??? ?? ?????? ???? ?? ??0?0?????? f(x0+h) =h!0hp(a0+a1h++amhm+o(hm))????a06= 0 (n=m+p): ????? ?f(x0+h)h!0a0hp????a06= 0?? sinx=x 1x26 +ox2 ?????f????? ??DLn(x0)????? ??DL??? ??????? ???????f????? ??DLn(x0)?? ????()????n1? ?????f????? ?? DL n1(x0)????? ??? f(x) =a0+a1(xx0) ++an1(xx0)n1+o (xx0)n1 x 0 ??x0 BY: C x 0 ??x0 ???? ?? ????f0(x0) =a1: ??????? ?? ??? ??x0=2 U?? ??f????? ??? ?????? ??x0? ?? ???? ?? ?????? ?? DL

0(x0)?x0?????;????? ???f(x) =a+o(1)? ?? ???? ???????

lim x!x0x6=x0e f(x) = limx!x0x6=x0f(x) = limx!x0x6=x0[a+o(1)] =a=ef(x0)? lim x!x0x6=x0e f(x)ef(x0)xx0= limx!x0x6=x0f(x)axx0= limx!x0x6=x0[b+o(1)] =b:

0(x0) =b?

f(0) = 1??f(x) =ex1x BY: C ????x2R?ex= 1 +x+x22 +ox!0x2? ?? ?? ??????? ????x6= 0?f(x) = 1 +x2 g(0) = 2??g(x) =ex1x ??x6= 0: x

0?x0??????

??DLn(x0)?x0?????? ????? ??? ?

8x2I; f(x) =nP

k=0f BY: C f(x) =a0+a1(xx0) ++an(xx0)n+o((xx0)n)? ?????? ??? ??????? ??DL?8k2[[0;n]]; ak=f(k)(x0)k!? sinxx!0xx36 x=nP k=0x kk!+o(xn) (DLn(0)??exp);cosx=nP k=0x

2k(2k)!+ox2n+1(DL2n+1(0)??ch);??x=nP

k=0x

2k+1(2k+1)!+ox2n+2(DL2n+2(0)??sh);ln(1 +x) =nP

k=1(1)k+1xkk +o(xn) (DLn(0)?? ?x7!ln(1 +x));????2R?DLn(0)?? ?x7!(1 +x)?(1 +x)= 1 +x+(1)2! =11

1+x=nP

BY: C ??? ???? ??? ????n > p?? ????n p????np? ?? ? ????np? (1 +x)p=pX k=0 p k x k? ?? ????? ??? ???? ???? ?? ???? ????? ?? ??????? ???DLn(0)??p1 +x?=12 ? ??1p1+x?= 12 ??p1 +x= 1 +12 x+nP k=2(1)k1135(2k3)246(2k)xk+o(xn)1p1+x= 1 +nP

4(P) =P:

BY: C o(xn)????(P;Q)2(Cn[X])2????? f(x) +g(x) =P(x) +Q(x) +o(xn): o(xn)????(P;Q)2(Cn[X])2????? f(x)g(x) =?????n[P(x)Q(x)] +o(xn): (Cn[X])2?? ??g(0) = 0?? ??g(V2)V1?????fg??? ???? ?????? ?? f(g(x)) =?????n[P(Q(x))] +o(xn): ????g(x) = sinx?? ?? ? ????sin(0) = 0: sinx=xx36 +ox3??exp(u) = 1 +u+u22 +u36 +ou3: ??????Q(x) =xx36 :??DL3(0)??exp(sinx)?? ??????? ?? ???? 3: exp(sinx) =?????3"

1 +Q(x) +Q(x)22

+Q(x)36 BY: C ? ???????3: exp(sinx) = 1 +x+12 x2+ox3: ?xx 2x 311

Q(x)11=6Q

2(x)1 Q 3(x)? ??cosx?????cosx= 1x22 +ox3:?? ???? ???? ?????? ? e cosx= exp 1x22 +ox3 =e1exp x22 +ox3 +ox3?g1??? ??? ??????? ???? ????? ??DL3(0)??exp(g1(x))??? ?? ??????? ???DL3(0) ??exp(u)?? ??g1(x):???? ? exp x22 +ox3 =?????3"

1 +Q(x) +Q(x)22

+Q(x)36 +ox3 = 1x22 +ox3: e cosx=eex22 BY: C f(x) =a0+a1x+a2x2++anxn+o(xn);????a06= 0?

1f(x)=1a

011 + a1a

0x++ana

0xn+o(xn):

?? ????Q(x) =a1a

0x++ana

???? ??DLn(0)??11+u:

11 +u=nX

k=0(1)kuk+o(un):

1f(x)=1a

0?????n"

nX k=0(1)kQ(x)k# +o(xn): ???????DL

3(0)??x=sinx?

f

1(x) = 1x26

+ox2

1=f1(x)?

f BY: C ? ?? ? ???? ??? ?????? ?? ?? ?????? ???? ? ??????? ??f1??? ?????? ??? DL

2(0)??11+u? ?

11x26 +o(x2)= 1 +x26 +ox2: xsinx=11x26 +o(x3)= 1 +x26 +ox3 ????1sin(x)=1x xsin(x)? ? ??? ?

1sinx=1x

+x6 +ox2: ?????cos(x) = 1x22 +o(x3)?

1cos(x)=11x22

+o(x3)= 1 +x22 +o(x3) ?????tan(x) =sin(x)cos(x)? tan(x) = xx36 +o(x3)

1 +x22

+o(x3) =x+12 16 x

3+o(x3)

????tan(x) =x+x33 BY: C ]x0r;x0]????? ?? ???????r >0?? ??f0????? ??DLn(x0)?x0?????? f

0(x) =a0+a1(xx0)+a2(xx0)2++an(xx0)n+o((xx0)n);

?????f????? ??DLn+1(x0)?x0?????? ????? ??? f(x) =f(x0)+a0(xx0)+a1(xx0)22 ++an(xx0)n+1n+ 1+o (xx0)n+1

11 +x=nX

k=0(1)kxk+o(xn) )ln(1 +x) = ln(1) +nX k=0(1)kxk+1k+ 1+oxn+1: ?? ???? ????? ??????? ??DL??0??arctan?? ??arcsin????? ? ? (arctan)

0(x) =11+x2??(arcsin)0(x) =1p1x2?arctan(x) =n1P

k=0(1)kx2k+12k+1+o(x2n)arcsin(x) =x+nP x BY: C ???? ??? ??DL? ???????3????? ??h????? ??DL??0? ???? ????? ?? ??????? ????? ??? ???? DL

5(0)??(sinx)3? ?? ???? ??????? ??DL2(0)??(h(x))3:??????? ??

sinx=xx36 +ox3 (sinx)3= xx36 +ox33 =x3 1x26 +ox23 ?????h(x) = 1x26 +ox2?? 1x26 +ox22 1x26 +ox2 1x26 +ox2 =?????2 1x26 2! +ox2= 1x23 +ox2: 1x26 +ox23 1x26 +ox22 1x26 +ox2 =?????2 1x23 1x26 +ox2 = 1x22 +ox2: 1x26 +ox23()=?????2 1x26 3! +ox2= 1x22 BY: C (sinx)3=x3 1x22 +ox2 =x3x52 +ox5: ?? ?? ??0? ???? ?????? ?? ? ???? ?(ex1)m=xm(h(x))m? ??? DL (ex1)m= (x+o(x))m=xm(1 +o(1))m: ?? ?? ? ???????0????(1 +o(1))m????? ?? ?? ? ???????0? (1 +o(1))m=?????0(1m) +o(1) = 1 +o(1)? (ex1)m=xm(1 +o(1)) =xm+o(xm): ????? ??DLm(0)??ex;?? ??? ????? ? (ex1)m= mX k=1x kk!+o(xm)! m =?????m mX k=1x kk!! m! +o(xm) =::: (ex1)g(x)= exp(g(x)ln(ex1)) BY: C ? ??????? ?? ???? ?????? ???DL??cos??sin? ???????5? ?? ???? ???cosx= 1x22 +x424 sinx=xx36 +ox4=x 1x26 +ox3quotesdbs_dbs41.pdfusesText_41

[PDF] fonctions équivalentes usuelles

[PDF] fonctions excel pdf

[PDF] alphabet acrosport

[PDF] section de recherche saison 8 replay

[PDF] les paramètres du son 6eme

[PDF] les parametres du son education musicale

[PDF] recherche excel

[PDF] les parametres du son college

[PDF] musique sur les camps de concentration

[PDF] j'traine des pieds karaoké

[PDF] j'traine des pieds analyse

[PDF] j'traine des pieds wikipedia

[PDF] la richesse des nations livre 2 pdf

[PDF] chanson sur la shoah

[PDF] stomp education musicale