[PDF] Fonctions réciproques 11.1.6 Fonction ré





Previous PDF Next PDF



Composition de fonctions dérivées successives et fonction réciproque

12 oct. 2017 Composition de fonctions dérivées successives et fonction réciproque. Table des matières. 1 Dérivée de la composée. 2. 1.1 Définition .



Cours informel sur la fonction réciproque.

Définition graphique. Par définition le nombre dérivé en a



Fonctions réciproques

11.1.6 Fonction réciproque – Dérivée. Notons que si f est bijective alors elle admet une fonction réciproque fL1. Ces deux fonctions vérifient la.



Fonctions réciproques 21/10/02 Deug MIASSM TC

2. Calculer la dérivée d'une fonction réciproque a) Esquisser le graphe des fonctions dont il est question puis rectifier les erreurs éventuelles dans la.





CHAPITRE 19 Dérivation des fonctions dune variable réelle

Connaître la définition de fonction dérivée et les dérivées des fonctions Donc f est bijective et sa fonction réciproque (arctan) a pour dérivée :.



Tableau de variation :

On admettra la propriété réciproque à savoir que : Si f est une fonction dérivable sur un intervalle I de IR et si sa dérivée est nulle sur I.



Chapitre 3 Dérivabilité des fonctions réelles

Autrement dit les extréma d'une fonction `a l'intérieur d'un intervalle sont `a chercher parmi les points o`u la dérivée s'annule. Attention



Chapitre 7 Fonctions réciproques et nouvelles fonctions usuelles

Proposition 7.16 La fonction arctangente est impaire continue sur R et strictement croissante; elle est dérivable sur R et sa dérivée est : arctan1pxq “. 1. 1 



Corrigé du TD no 11

La fonction f est continue dérivable sur R et sa dérivée (pour un calcul plus détaillé d'une bijection réciproque



[PDF] Dérivation de fonctions réciproques

Dérivation de fonctions réciproques- Fonctions élémentaires Exercice 1: Montrer que les fonctions ƒ et g admettent une fonction réciproque que l'on



[PDF] Fonctions réciproques

11 1 6 Fonction réciproque – Dérivée Notons que si f est bijective alors elle admet une fonction réciproque fL1 Ces deux fonctions vérifient la



[PDF] Composition de fonctions dérivées successives et fonction réciproque

12 oct 2017 · Composition de fonctions dérivées successives et fonction réciproque Table des matières 1 Dérivée de la composée 2 1 1 Définition



[PDF] Feuille 1 Fonctions réciproques & Dérivabilité Quelques Rappels

Exercice 4 En revenant à la définition donner le domaine de dérivabilité et calculer la dérivée des fonctions suivantes 1 La fonction x ?? xn définie sur R 



[PDF] Fonctions réciproques 21/10/02 Deug MIASSM TC

Montrer que f admet une réciproque f?1 calculer cette réciproque et sa dérivée Réponse: Pour x réel quelconque on a f(x) = ? ?? (x + 1) ?



[PDF] Fonctions réciproques

BTS MAI 2 Chap 8 : Fonctions réciproques I Définition Théor`eme 1 : Toute fonction f définie sur un intervalle I continue et strictement monotone sur



[PDF] 1) Fonction reciproque 2) Propriete de la fonction reciproque

f C I ? L'application qui a tout ( ) y f I ? associe son unique antecedent par la fonction f est appelée fonction reciproque de f On la note 1



[PDF] Cours informel sur la fonction réciproque

Fonction réciproque Dérivée Primitives TS et plus La fonction logarithme népérien admet une fonction réciproque sur ]??; ?[ la fonction



[PDF] Fonction réciproque dune fonction strictement monotone sur un

Soit f : I ?? R une fonction continue et strictement monotone définie sur un intervalle I ? R 63 1 Fonctions réciproques Définition 1 : Soient E F ? R



[PDF] Fonctions usuelles fonctions réciproques

Donner une formule pour la fonction réciproque de f : I? -? J? Calculer la dérivée de f les limites aux bornes de l'ensemble de définition 

  • Comment dériver une fonction réciproque ?

    D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ? ( x ) = 0 ? x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.
  • Quelle est la fonction réciproque ?

    En analyse, la fonction réciproque (ou bijection réciproque) d'une fonction bijective f est une fonction notée f-1 qui, à partir du résultat obtenu en appliquant f sur un nombre, redonne ce nombre.
  • On va déterminer la réciproque par intervalles. Remarquons d'abord que f f définit une bijection de ]??;1[ ] ? ? ; 1 [ dans ]??;1[ ] ? ? ; 1 [ par la formule f(x)=x f ( x ) = x . La bijection réciproque est donnée par f?1(y)=y f ? 1 ( y ) = y .

Fonctions réciproquesy=f(x)

XY x = g(y)=f (y) -1 x=messagey=message codécodage décodagex=message

B. Aoubiza

IUT Belfort-Montbéliard

Département GTR

6 janvier 2003

Table des matières

11.1Fonctionsréciproques .......................................... 3

11.1.1 Fonction réciproque - Définition................................ 3

11.1.2Fonctionréciproque-Domaineetdomaineimage...................... 4

11.1.3Fonctionréciproque-Déterminationdelafonctionréciproque............... 4

11.1.4Fonctionréciproque-Propriétédecontinuité ........................ 5

11.1.5Fonctionréciproque-Graphe................................. 5

11.1.6Fonctionréciproque-Dérivée................................. 6

11.1.7Fonctionréciproque-unthéorèmed'existence........................ 7

11.2Fonctionstrigonométriquesréciproques................................. 7

11.2.1 Fonction réciproque desin - Définition............................. 7

11.2.2 Fonction réciproque desin - Propriétés ............................ 8

11.2.3 Fonction réciproque desin - Graphe.............................. 8

11.2.4 Fonction réciproque desin - Dérivée.............................. 9

11.2.5 Fonction réciproque decos - Définition ............................ 9

11.2.6 Fonction réciproque decos - Propriétés ............................ 9

11.2.7 Fonction réciproque decos - Graphe.............................. 10

11.2.8 Fonction réciproque decos - Dérivée.............................. 10

11.2.9Relationfondamentale...................................... 11

11.2.10Fonction réciproque detan - Définition ............................ 11

11.2.11Fonction réciproque detan - Propriétés ............................ 11

11.2.12Fonction réciproque detan - Graphe.............................. 12

11.2.13Fonction réciproque detan - Dérivée.............................. 12

11.2.14Fonction réciproque decot - Définition ............................ 13

11.2.15Fonction réciproque decot - Propriétés ............................ 13

11.2.16Fonction réciproque decot - Graphe.............................. 14

11.2.17Fonction réciproque decot - Dérivée.............................. 14

11.2.18Fonctionstrigonométriquesréciproques - Résumé....................... 14

11.3 Fonctions exponentielles de base................................... 15

11.3.1 Fonctions exponentielles de base - Propréités........................ 15

11.3.2 Fonctions exponentielles de base - Graphe.......................... 15

11.4 Fonction exponentielle de base.................................... 16

11.4.1 Fonction exponentielle - Définition............................... 16

11.4.2Fonctionexponentielle - Propriétésetlimitesusuelles .................... 17

11.4.3Fonctionexponentielle - Graphe ................................ 17

11.4.4Fonctionexponentielle - Dérivée ................................ 18

11.4.5Fonctionexponentielle - Dérivéedelacomposée ....................... 18

11.5Fonctionshyperboliques......................................... 19

11.5.1 Fonctions hyperboliques - Définitions ............................. 19

11.5.2 Fonctions hyperboliques - Fonctioncosh............................ 19

11.5.3 Fonctions hyperboliques - Fonctionsinh............................ 20

11.5.4Fonctionshyperboliques - Relationfondamentale....................... 20

11.6Fonctionshyperboliquesréciproques .................................. 20

11.6.1 Fonction réciproque decosh - Définition............................ 20

11.6.2 Fonction réciproque decosh - Propriétés............................ 21

11.6.3 Fonction réciproque decosh - Graphe ............................. 21

1

11.6.4 Fonction réciproque decosh - Dérivée............................. 21

11.6.5 Fonction réciproque desinh - Définition............................ 21

11.6.6 Fonction réciproque desinh - Propriétés............................ 22

11.6.7 Fonction réciproque desinh - Graphe ............................. 22

11.6.8 Fonction réciproque desinh - Dérivée ............................. 22

11.7 Fonction logarithme........................................... 23

11.7.1 Fonction logarithme - Définition ................................ 23

11.7.2 Fonction logarithme - Graphe.................................. 23

11.7.3 Fonction logarithme - Propriétés . ............................... 23

11.7.4 Fonction logarithme - Dérivée . . ............................... 25

11.7.5 Fonction logarithme - Dérivéeln(())............................ 25

11.8 Fonctions logarithme de base(0)................................. 27

11.8.1 Fonctions logarithme de base - Définition.......................... 27

11.8.2 Fonctions logarithme de base - Propriétés.......................... 27

11.8.3 Fonctions logarithme de base - Changementdebase.................... 27

11.8.4 Fonctions logarithme de base - Dérivation.......................... 28

11.9 Fonctions exponentielles de base................................... 28

11.9.1 Fonctions exponentielles de base - Nouvelleformulation.................. 28

11.9.2 Fonctions exponentielles de base - Dérivation........................ 28

11.10Fonctionspuissances........................................... 28

11.10.1Fonctions puissances - Définition................................ 28

11.10.2Fonctionspuissances - Dérivée ................................. 29

11.10.3Fonctionspuissances - Graphes................................. 29

11.11Comparaisondescroissances....................................... 29

2

11.1 Fonctions réciproques

11.1.1 Fonction réciproque - Définition

Il arrive souvent que, pour une fonction donnée, on a besoin (si c'est possible) d'une autre fonctiontelle

que : yfgxx Dèfinition 1(Fonctions réciproque)Siest une application dedansetest une application de danstelles que - (()) =pour tout - (()) =pour tout on dit queest la fonctionréciproquede,etqueest la fonctionréciproquede.

Notation 1La fonction réciproque dese note

1 y=f x()

XYx = g yf y() = ()

-1 xy Exemple 1Soientetles deux fonctions définies par :[0+[[0+[ 7 2 et:[0+[[0+[ 7 Ces deux fonctions vérifient les relations suivantes : 2 =pour tout[0+[ 2 2 =pour tout[0+[ Doncest la fonctionréciproquede,etest la fonctionréciproquede.

Dèfinition 2(Fonction Bijective)une fonctionestbijectivesur un domaine (intervalle) si chaque fois

que( 1 2 ),alors 1 2 Remarque 1Rappelons que toute fonction bijective admet une fonction réciproque.

Exemple 2Montrer que la fonction()=

3 est bijective.

Solution :Montrons que si(

1 2 )alors 1 2

Soient

1 et 2 deux réels quelconques tels que( 1 2 ).Ona 31
32
et donc 31
32
=0 or 31
32
1 2 21
1 2 22
)=0 Le produit est nul si l'un des facteurs est nul. On déduit donc que 1 2 car 21
1 2 22
ne peut pas être nul dansR. (dire pourquoi?)

Exemple 3La fonction()=

2 définie pour tout réel, n'est pas bijective car(1) =(1)mais16=1. 3

Test de la droite horizontale

Une fonctionestbijectivesi et seulement si toute droite horizontale ne peut rencontrer qu'au plus en un point.

Fonction bijective

Même image pour 2 valeurs

différentes x 2 x 11 f( )x 2 f( ) x 11

Fonction non bijective

11.1.2 Fonction réciproque - Domaine et domaine image

On déduit facilement les relations suivantes entre ledomaine imageet ledomainede définition : domaine de 1 =domaine image de domaine image de 1 =domaine de

11.1.3 Fonction réciproque - Détermination de la fonction réciproque

Pour déterminer la fonction réciproque de=():

1. Résoudre l'équation=()où l'inconnue est, on obtient alors=().

2. Remplacerparetpardans l'expression=()pour obtenir

1

Exemple 4Soit()=

2 pour0. Déterminer sa fonction réciproque.

Solution: On résout l'équation

2 0 où l'inconnue est,onobtient 0

Maintenant on remplaceparetparon obtient

0

Ainsi, la fonction réciproque

1 ()de()= 2 ,pour0, est la fonction racine carrée : 1 Point de vue graphique. Si on regarde le graphe de= 2 ,pourtouton voit que cette fonction ne peut pas avoir de réciproque pour tout. 02468
-4 -2 2 4 x 2 Noter que la droite horizontale=4coupe la courbe de= 2 en deux points. Ce qui signifiequelafonction n'est pas bijective et donc elle n'admet pas de fonction réciproque. 4

11.1.4 Fonction réciproque - Propriété de continuité

Théorème 1Siest une fonction bijective continue sur un intervalle, alors sa fonction réciproque

1 est aussi continue.

11.1.5 Fonction réciproque - Graphe

Théorème 2Les courbes des fonctionset de sa réciproque 1 sont symétriques par rapport à la droite Preuve.Lapentededroitepassantparlespointes()et()est donnée par e=1 Ce qui signifie que cette droite est orthogonale à la droite=de pente1En utilisant des arguments géométriques :(\)=(\)est donc les trianglesetsont "semblables", on déduit que y=f x()() b,a x ()a,b y=fx -1 y y=x B O A C Ce qui signifiequeest le symétrique depar rapport à la première bissectrice=.

Exemple 5Lesgraphesdesfonctions

2 ,,et. y=x y y=x 2 y=x x

Courbes de

2 ,,et Exemple 6Déterminer la fonction réciproque de=4+1et tracer son graphe. Solution :Résolvons l'équation=4+1où l'inconnue est: =4+1 =(1)4=1 414

Maintenant on remplaceparetparon obtient

=1 414

Ainsi,

1 1 4 1 4 . Les courbes deet de 1 sont symétriques par rapport à= 5 xy= x+ 41
y y=x y= x- 1414
Exemple 7Déterminer la fonction réciproque de()= 2 pour0et tracer sa courbe. Solution :Résolvons l'équation où l'inconnue est 2 0 on obtient 0

Maintenant on remplaceparetparon obtient

0

Ainsi,

1 ()==pour0. Les courbes deet de 1 sont symétriques par rapport à= y=x x y=x 2 y=xy

Courbes de

2 ,et

11.1.6 Fonction réciproque - Dérivée

Notons que siest bijective, alors elle admet une fonction réciproque 1 . Ces deux fonctions vérifient la relation suivante : 1 ()) =et 1 Ainsi, en dérivant des deux côtés, on obtient 1 0 =1 et en utilisant la relation de la dérivation des fonctions composées : 0 0 0 on déduit que 1 0 0 1 1 0 ()=1 d'où 1 0 ()=1 0 1 6 Exemple 8Déterminer la dérivée de la fonction réciproque de()= 3 Solution :La fonction réciproque est donnée par 1 13

Sachant que

0 ()=3 2 et que( 1 0 1 0 1quotesdbs_dbs41.pdfusesText_41
[PDF] activité réciproque du théorème de pythagore

[PDF] musique de film youtube

[PDF] pythagore 3eme exercices

[PDF] activité 2nd degré

[PDF] recherche musique de film

[PDF] musique de film compositeur

[PDF] redaction thales

[PDF] l'influence de la musique sur les capacités cognitives

[PDF] bienfaits de la musique sur le cerveau

[PDF] musique et éducation

[PDF] les bénéfices de la musique

[PDF] musique et mémorisation

[PDF] les bienfaits de la musique sur l'homme

[PDF] objectif du chant ? l école

[PDF] les bienfaits de l'enseignement de la musique