[PDF] LES SUITES (Partie 2) Yvan Monka – Académie de





Previous PDF Next PDF



LIMITES DES FONCTIONS (Chapitre 2/2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr Méthode : Utiliser les théorèmes de comparaison et d'encadrement.



DÉMONSTRATIONS AU PROGRAMME POUR LE BAC S

Yvan Monka – Académie de Strasbourg – www.maths-?et-?tiques.fr D'après le théorème de comparaison des limites on en déduit que lim.



Le théorème de comparaison entre cohomologies de de Rham d

PUBLICATIONS MATHÉMATIQUES DE L'I.H.É.S. ZOGHMAN MEBKHOUT. Le théorème de comparaison entre cohomologies de de Rham d'une variété algébrique complexe et le 



LES SUITES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. LES SUITES (Partie 2). I. Limites et comparaison. 1) Théorèmes de comparaison. Théorème 1 :.



LIMITES ET CONTINUITE (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. LIMITES ET CONTINUITE Méthode : Utiliser les théorèmes de comparaison et d'encadrement.



Démonstration du théorème de comparaison Théorème de

Théorème de comparaison. Le principe. On ne démontre que la première propriété. On utilise la démonstration de la limite infinie d'une suite.



Équations Différentielles Stochastiques Rétrogrades (EDSRs) et

Jul 10 2010 Théorème de comparaison. 2 EDSRs Unidimensionnelles ... 3 EDSRs et Mathématiques Financières. Présentation de la finance mathématique.



Séries numériques Table des matières

et que (un) est positive la série converge. 2.2.5 Comparaison logarithmique. THÉORÈME 2.15 ? Comparaison logarithmique. On considère deux séries ?un et ?vn.



Cours de Mathématiques - MP

Intégration des relations de comparaison . variations infinitésimales de quantités mathématiques. ... Théorème 3.19 : Comparaison séries/intégrales.



Vol. 69 No.1 DUKE MATHEMATICAL JOURNAL © January 1993

DEUX THÉORÈMES DE COMPARAISON EN. COHOMOLOGIE ÉTALE; APPLICATIONS. BRUNO KAHN. Introduction. 137. I. Démonstration du théorème 1.

1

LES SUITES (Partie 2)

I. Limites et comparaison

1) Théorèmes de comparaison

Théorème 1 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =+∞ alors lim Par abus de langage, on pourrait dire que la suite (u n ) pousse la suite (v n ) vers +∞ à partir d'un certain rang.

Démonstration au programme :

Soit un nombre réel a.

- lim =+∞, donc l'intervalle contient tous les termes de la suite à partir d'un certain rang que l'on note n 1

On a donc pour tout í µâ‰¥í µ

6 - A partir d'un certain rang, que l'on note n 2 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), on a : í µ<í µ

On en déduit que l'intervalle

contient tous les termes de la suite (v n ) à partir du rang max(í µ 6

Et donc lim

Théorème 2 :

Soit (u

n ) et (v n ) deux suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =-∞ alors lim 2 Méthode : Déterminer une limite par comparaison

Vidéo https://youtu.be/iQhh46LupN4

Déterminer la limite suivante : lim

-1 -1 ≥-1 donc í µ -1 -1

Or lim

-1=+∞ donc par comparaison lim -1

2) Théorème d'encadrement

Théorème des gendarmes :

Soit (u

n ), (v n ) et (w n ) trois suites définies sur ℕ.

Si, à partir d'un certain rang, í µ

et lim =lim =í µ alors lim Par abus de langage, on pourrait dire que les suites (u n ) et (w n ) (les gendarmes) se resserrent autour de la suite (v n ) à partir d'un certain rang pour la faire converger vers la même limite. Ce théorème est également appelé le théorème du sandwich.

Démonstration :

Soit un intervalle ouvert I contenant L.

- lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 1 3 - lim =í µ, donc l'intervalle I contient tous les termes de la suite à partir d'un certain rang que l'on note n 2 - A partir d'un certain rang, que l'on note n 3 , on a í µ - Ainsi pour tout í µâ‰¥max(í µ 6 ), l'intervalle I contient tous les termes de la suite (v n

Et donc lim

Méthode : Déterminer une limite par encadrement

Vidéo https://youtu.be/OdzYjz_vQbw

Déterminer la limite suivante : lim

1+

BCDí±¢

1 siní µ 1

Or : lim

1 =lim 1 =0 donc d'après le théorème des gendarmes lim siní µ =0

Et donc lim

1+

BCDí±¢

=1.

II. Suites majorées, minorées, bornées

1) Définitions :

Définitions : - La suite (u

n ) est majorée s'il existe un réel M tel que pour tout entier n ϵℕ, í µ - La suite (u n ) est minorée s'il existe un réel m tel que pour tout entier nϵℕ, í µ - La suite (u n ) est bornée si elle est à la fois majorée et minorée.

Exemples :

- Les suites de terme général cosí µ ou -1 sont bornées. - La suite de terme général n 2 est minorée par 0. Méthode : Démontrer qu'une suite est majorée ou minorée

Vidéo https://youtu.be/F1u_BVwiW8E

On considère la suite (u

n ) définie pour tout entier naturel n par í µ í±¢*6 6 +2 et O =2. Démontrer par récurrence que la suite (u n ) est majorée par 3. 4 • Initialisation : O =2<3

La propriété est donc vraie pour n = 0.

• Hérédité : - Hypothèse de récurrence : Supposons qu'il existe un entier k tel que la propriété soit vraie : í µ Q <3. - Démontrons que : La propriété est vraie au rang k+1 : í µ Q*6 <3.

On a : í µ

Q <3 donc 6 6

×3 et donc

6 +2< 6

×3+2.

Soit : í µ

Q*6 <3 • Conclusion :

La propriété est vraie pour n = 0 et héréditaire à partir de ce rang. D'après le principe

de récurrence, elle est vraie pour tout entier naturel n, soit : í µ <3.

2) Convergence des suites monotones

Propriété : Soit (u

n ) une suite croissante définie sur ℕ.

Si lim

=í µ alors la suite (u n ) est majorée par L.

Démonstration par l'absurde :

Démontrons par l'absurde en supposant le contraire, soit:"Il existe un rang p, tel que í µ T - L'intervalle ouvert Ví µ-1;í µ T

W contient L.

Or, par hypothèse, lim

=í µ. Donc l'intervalle Ví µ-1;í µ T

W contient tous les termes

de la suite (u n ) à partir d'un certain rang (1). - Comme (u n ) est croissante : í µ T pour í µ>í µ.

Donc si í µ>í µ, alors í µ

∉Ví µ-1;í µ T W (2). (1) et (2) sont contradictoires, on en déduit qu'il n'existe pas p ϵℕ, tel que í µ T

Et donc la suite (u

n ) est majorée par L.

Théorème de convergence monotone :

- Si une suite croissante est majorée alors elle est convergente. - Si une suite décroissante est minorée alors elle est convergente. - Admis -

Remarque :

Ce théorème permet de s'assurer de la convergence mais ne donne pas la limite. Dans l'exemple ci-dessous, la suite décroissante est minorée par 2. Cela prouve que la limite de la suite est supérieure à 2 mais n'est pas nécessairement égale à 2. 5 Méthode : Utiliser le théorème de convergence monotone

Vidéo https://youtu.be/gO-MQUlBAfo

On considère la suite (u

n ) définie pour tout entier naturel n par í µ í±¢*6 6 +2 et O =2.

Démontrer que la suite (u

n ) est convergente et calculer sa limite. - On a démontré dans le paragraphe I. que la suite (u n ) est croissante. On a démontré dans la méthode précédente que la suite (u n ) est majorée par 3. D'après le théorème de convergence monotone, on en déduit que la suite (u n ) est convergente. - On pose :lim í±¢*6 =lim

Or í µ

í±¢*6 6 +2, donc lim í±¢*6 =limquotesdbs_dbs47.pdfusesText_47
[PDF] Mathematiques:calculer a² et b²

[PDF] Mathématiques:devoir maison

[PDF] Mathématiques:devoir maison numéro 5

[PDF] Mathématiques:Devoir maison n°6

[PDF] mathématiques:Problème de vecteur

[PDF] Mathématiques:résoudre une équation

[PDF] Mathématiques; exercice; Ecrire une expression mathematique traduisant :

[PDF] Mathématiques_ fonction trinôme

[PDF] Mathématiques~ km/h Vitesse Moyenne

[PDF] Mathematique_fractions

[PDF] Mathematique_probleme

[PDF] mathématix ( dm de math)

[PDF] Mathémmatique

[PDF] mathenpoche

[PDF] mathenpoche 3