[PDF] PRODUIT SCALAIRE





Previous PDF Next PDF



PRODUIT SCALAIRE

- Admis -. Page 3. 3. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 5) Identités remarquables. Propriétés : Pour tous vecteurs u ! et v ! on a 



Première S - Définition du produit scalaire

II) Définition du produit scalaire : 1) Définition: Le produit scalaire de deux vecteurs et est le nombre réel noté : . (lire. « scalaire » définie par :.



PRODUIT SCALAIRE

1ère SPÉCIALITÉ MATHÉMATIQUES. 03 ? PRODUIT SCALAIRE 6. V Applications du produit scalaire pour le calcul de longueurs et de mesures d'angles.



Le produit scalaire et ses applications - Lycée dAdultes

17 mai 2011 Définition 1 : On appelle produit scalaire de deux vecteurs u et v le ... Prenons un repère orthonormal (O



Corrigé des exercices – PRODUIT SCALAIRE

On pourra rajouter des projetés orthogonaux sur le dessin pour s'aider. Exercice 3 : dans chacun des cas suivants calculer le produit scalaire de +? ...



Première S - Application du produit scalaire : Géométrie analytique

Application du produit scalaire: Géométrie analytique. I) Vecteur normal et équation de droite. 1) Vecteur normal à une droite. Dire que.



Première générale - Produit scalaire - Exercices

En déduire que : ?IA??IB=6 et cos^. AIB= 1. ?5. Exercice 3 corrigé disponible https://physique-et-maths.fr ... Calculer les produits scalaires ?.



APPLICATIONS DU PRODUIT SCALAIRE

Méthode : Déterminer un angle à l'aide du produit scalaire Soit la droite d d'équation cartésienne 2x ? 3y ? 6 = 0. ... 1ère formule :.



Première S - Propriétés de calcul du produit scalaire - Projeté

Propriétés de calcul du produit scalaire. Projeté orthogonal. I) Propriétés de calculs. 1) Définition. Pour tout vecteur du plan le carré scalaire du 



Produit scalaire et plans dans lespace

11 juil. 2021 AC donc le triangle ABC est rectangle en A. PAUL MILAN. 3. TERMINALE MATHS SPÉ. Page 4 ...

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPRODUIT SCALAIRE La notion de produit scalaire est apparue pour les besoins de la physique. Le concept relativement récent et a été introduit au milieu du XIXe siècle par le mathématicien allemand Hermann Grassmann (1809 ; 1877), ci-contre. Il fut baptisé produit scalaire par William Hamilton (1805 ; 1865) en 1853. I. Définition et propriétés 1) Norme d'un vecteur Définition : Soit un vecteur

u et deux points A et B tels que u =AB . La norme du vecteur u , notée u , est la distance AB. 2) Définition du produit scalaire Définition : Soit u et v deux vecteurs du plan. On appelle produit scalaire de u par v , noté u .v , le nombre réel définit par : - u .v =0 , si l'un des deux vecteurs u et v est nul - u .v =u ×v

×cosu

;v , dans le cas contraire. u .v se lit " u scalaire v ". Remarque : Si AB et AC sont deux représentants des vecteurs non nuls u et v alors : u .v =AB .AC =AB

×AC

×cosBAC

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frExemple : Vidéo https://youtu.be/CJxwKG4mvWs Soit un triangle équilatéral ABC de côté a.

AB .AC =AB

×AC

×cosBAC

=a×a×cos60° =a 2

×0,5

a 2 2 Attention : Le produit scalaire de deux vecteurs est un nombre réel. Ecrire par exemple u .v =0

est une maladresse à éviter ! 3) Propriété de symétrie du produit scalaire Propriété : Pour tout vecteur

u et v , on a : u .v =v .u

Démonstration : On suppose que

u et v sont non nuls (démonstration évidente dans la cas contraire). u .v =u ×v

×cosu

;v =v ×u

×cosu

;v =v ×u

×cos-v

;u =v ×u

×cosv

;u =v .u

4) Opérations sur les produits scalaires Propriétés : Pour tous vecteurs

u v et w , on a : 1) u .v +w =u .v +u .w 2) u .kv =ku .v , avec k un nombre réel. - Admis -

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 5) Identités remarquables Propriétés : Pour tous vecteurs

u et v , on a : 1) u +v 2 =u 2 +2u .v +v 2 2) u -v 2 =u 2 -2u .v +v 2 3) u +v u -v =u 2 -v 2

Démonstration pour le 2) :

u -v 2 =u -v u -v =u .u -u .v -v .u +v .v =u 2 -2u .v +v 2

II. Produit scalaire et norme Soit un vecteur

u , on a : u .u =u ×u

×cosu

;u =u 2

×cos0=u

2 et u .u =u 2

On a ainsi :

u 2 =u .u =u 2

Propriété : Soit

u et v deux vecteurs. On a : u .v 1 2 u 2 +v 2 -u -v 2 et u .v 1 2 u +v 2 -u 2 -v 2

Démonstration de la première formule :

u -v 2 =u -v 2 =u 2 -2u .v +v 2 =u 2 -2u .v +v 2 donc u .v 1 2 u 2 +v 2 -u -v 2

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPropriété : Soit A, B et C trois points du plan. On a :

AB .AC 1 2 AB 2 +AC 2 -BC 2

Démonstration :

AB .AC 1 2 AB 2 +AC 2 -AB -AC 2 1 2 AB 2 +AC 2 -CB 2 1 2 AB 2 +AC 2 -BC 2

Exemple : Vidéo https://youtu.be/GHPvfaHnysg

CG .CF 1 2 CG 2 +CF 2 -GF 2 1 2 6 2 +7 2 -3 2 =38quotesdbs_dbs47.pdfusesText_47
[PDF] maths 1ere s second degré controle

[PDF] maths 1ere st2s fonctions

[PDF] maths 1ere sti2d hachette corrigé

[PDF] MATHS 1ère STMG - Statistiques

[PDF] Maths 1ère STMG Statistiques

[PDF] Maths 2de travail sans calculette

[PDF] maths 2nd

[PDF] Maths 2nd besoin d'aide

[PDF] Maths 2nd urgent

[PDF] Maths 2nde

[PDF] Maths 2nde exercice

[PDF] maths 2nde exercices

[PDF] maths 2nde Résolution approchée par balayage

[PDF] maths 2nde résolution d'équation

[PDF] Maths 3 eme