[PDF] Chaînes de Markov Une chaîne de Markov





Previous PDF Next PDF



Untitled

Puissance n-ième d'une matrice carrée. Convergence vers un état stable. 7) Matrices et études asymptotiques de processus discrets. Système proies/prédateurs.



? ? ? ? /

1.1.7. Matrices stochastiques. Cette famille de matrices carrées jouent un rôle important dans l'étude des processus stochastiques à temps discret.



Processus stochastiques modélisation

Chapitre 1 : PROCESSUS DE MARKOV. 1.1 Généralités p05. 1.2 Cha?nes de Markov `a temps discret p06. 1.2.1 Matrice de transition et graphe d'une cha?ne de 



Introduction à lÉtude des Séries Temporelles

13 avr. 2017 Un processus gaussien à temps discret (Xt)t?Z est une série tem- ... où ?k = (?ij)1?ij?k est la matrice de covariance asymptotique ...



Champs de Lévy additifs spectralement positifs et processus de

11 avr. 2022 De même que précédemment l'étude des PB multi-types discrets peut ... portements asymptotiques presque sûrs du PBD Z



Semaine dEtude Mathématiques et Entreprises 5: Propriétés

12 juin 2013 Propriétés asymptotiques de processus à volatilité stochastique ... SEME (Semaine d'Etudes pour les Mathématiques en Entreprise) à l'Ecole ...



Chaînes de Markov

Une chaîne de Markov est un processus aléatoire (Xn)n2N sa transformée de Fourier discrète avec ? = e2i?/N . D'autre part



Signaux aléatoires

Z ? N(mZQZ): vecteur gaussien de moyenne mZ et de matrice de covariance QZ. 1 Introduction `a l'étude des processus stochastiques.



´Etude de la stabilité et de la stabilisation des syst`emes `a retard et

un point d'équilibre globalement asymptotiquement stable s'il est stable et globale- ment attractif. avec ou supervisés par des processus discrets.



Thèse présentée pour lobtention du grade de Docteur de lUTC

2.4.1 Matrice de transition de la chaîne de Markov immergée . . . 38 tré sur l'étude des processus semi-markoviens à temps discret mais nous nous sommes.

Chapitre2

ChaînesdeMarkov

Résumé.Unechaînede Markovestunpro cessusaléatoire(X n n!N dont lestransitio nssontdonnéesparune matricestochastiqueP(X n ,X n+1 Cesproc essusvérifientlapropriétéde Markov,c'est-à-direqu'ob servés

àpartird'untemps(d'arrêt)T,(X

T+n n!N nedépend quedeX T etest denouv eauunechaînedeMarkov. Lesétatsd 'unechaînedeMarkov peuventêtreclassése ndeuxcatégo ries:lesétatstr ansitoires,quine sontvisitésqu'unnombre finidefois p.s.,etles étatsr écurrents,quiune foisatteints sontvisités p.s.uneinfinitédefois, ainsiquetouslesautres étatsdanslamême classederéc urrenc e.Pourunecha înedeMarkov irréductiblerécu rrente,lamesureempiriqueetlaloima rgina ledupro - cessusconv ergentsoitversl'uniquemesuredeprobabilitéP-invariante (récurrencepositive),soit verslevecteur nul(récurrencenulle).Cette théories'appliqueen particulierauxmarchesaléatoiresetau xmodèles defilesd'attente. Danscequis uit,onfixeune spac ed'étatsXfiniou dénombrable,muni delatribude l'ensembledesparties P(X).SiXestfini,on noteraNsonnombre d'éléments.

1.Ma tricesstochastiqueset propriétédeMarkov

1.1.Cha înesdeMarkov.UnematricestochastiquesurXestunefonction P:

(x,y)!X"#P(x,y)![0,1]telleque,p ourto utx!X, y!X

P(x,y)=1.

Autrementdit,tout x!Xdéfinitunemesure de probabilité P(x,·)surX,appelée probabilitédetransitionàpartirdex. Définition2.1(Chaîne deMarkov).Unechaîne deMar kovsur Xdematric ede transitionPestune suitedevariablesaléatoir es(X n n!N définiessurun espace (!,B,P) età valeursdans X,tellequepourtoutn,ettouspointsx 0 ,...,x n+1 P[X n+1 =x n+1 |X 0 =x 0 ,...,X n =x n ]=P(x n ,x n+1

Ainsi,lalo iconditio nnelleP

X n+1 |(X 0 ,...,Xn) estlaprobabilité detransitio nP(X n ,·).Il estutiled ereprésenter lesmesuresdeprobabilité "surXpardesvecteursen ligne ("(x 1 ),"(x 2 ),...,"(x k ),...).Alors,si" 0 estlaloi deX 0 ,quipeutêtrearbitraire,ona P[(X 0 ,X 1 ,...,X n )=(x 0 ,x 1 ,...,x n )]="(x 0 )P(x 0 ,x 1 )···P(x n"1 ,x n 7

82. CHAÎNE SDEMARKOV

parconditionneme ntsuccessif,desortequ'enparticulierlaloi" n deX n estdonnée par leproduit matriciel" n 0 P n .D'unpo intdevuedual,sifestunefonction bornéesur

X,vuecommeunvecteurcolonne,alors

E[f(X n+1 )|X 0 =x 0 ,...,X n =x n ]=(Pf)(x n E[f(X n n f=" 0 P n f. Notonsquelesproduitsmatriciels considérésso ntlicites mêmelorsquel'espace d'états estinfinidénom brable,puisqu'ona desbonnesbornessur lessommesde coe cientssur chaquelignedelam atricedetransi tion. Exemple.Onrepr ésenteusuellementunechaînedeMa rkovd'espaced'étatsXpar ungra pheorientéétiquetéG=(V,E)dontlessommetssont leséléments deX,etdont lesarê tesétiquetéessontlescouples (x,y)avecP(x,y)>0,lavaleurdelaprobabilité detransitio nétantl'étiquettedel'arêtex#y.Con sidéronsparexemplelachaînede Markovd'espaced' états[[1,N]],etdematricedetransition P= 1 3 111
11 .11 111
1 31
3 1 3 9 Leg rapheassociéestdessinéci-dessus, etlachaîneconsidéréeestl amarc hea léatoire surlecercle Z/NZoù,àchaq ueét ape,onaprobabilité1/3derestera umêmeendro it,et probabilité1/3desauter àgaucheo uàdro ite.Lesloismarginalesdecettec haînepeuvent êtrecalculéesco mmesuit.P ourtoutvecteurv!(C) Z/NZ ,notons

ˆv(k)=

1 N N j=1 v(j)# jk satransforméede Fourier discrète, avec#=e 2i!/N .D'autrepart,notonsC N lamatrice circulante C N 01 0 .1 10 ;P= I+C N +(C N "1 3

Pourtoutve cteurv,

(vC N )(k)=# k N parla transforméedeFourierdiscrètea gitdia gonalement,avec valeurs propres#,# 2 N .Il s'ensuitquesi Destlamat rice diagonale

D=diag

1+2cos

2! N 3

1+2cos

4! N 3

1+2cos

2N! N 3

1.MATR ICESSTOCHASTIQUESETPROP RIÉTÉDEMARKOV9

alorspourtout emesureiniti ale" 0 ,ona n 0 P n 0 D n où+·indiquelatra nsforméede Fourierinverse: +v(l)= 1 N N k=1 v(k)# "kl

Enpa rticulier,commeD

n pourtoutem esureinitiale" 0 ,laloimarginale" n convergeverslevecteur( 1 N 1 N C'estuncaspa rticul ierdesthé orèmesergodiquesquiserontévoqués auparagr aphe3.

Onpeu tmontrerqu epourtoutemesureinit iale"

0 surX,ettoutematricedetransition P,i lexist ee"ectivementunechaînedeMarkovave ccetteme sureinitialeetcett ematr ice detransitio n.OnnoteraP 0 etE 0 lesproba bilitésetespérancesrelativesà cettecha îne deMarko v,etdanslecasparti culie roù" 0 x estconcentrée enunseulpoint x!X, onnot eraP x etE x .Ces probab ilitésportentsurl'espacedestrajecto ires (X N ,P(X) #N munidelat ribupr oduit, etsurcetespace ,onaunicitéenloistraject oriel lesd'unech aîne deMark ovdeloiinitiale etmatr icedetra nsitiondonnées:laloiP 0 estentièremen tdé- terminéepar l'équation(!!).Cette propriété(!!)assurequelestransitionsd'unechaîne deMarko vautempsnsonthomogènesen temps(Pnedép endpasden),etne dépendent quedel'éta tprésen t,c'est-à-direque laloiconditionnellede X n+1 sachanttoutelatra- jectoire(X 0 ,...,X n )nedépend enfaitquede X n .Unereformulationdecesobservations estdonnée parlapropriétédeMarkov:

Proposition2.2.Si(X

n n!N estunechaîne deMarkov deloiP 0 ,alorspourtout m+n n!N estaussi unechaînede Markov, deloiP !m m indépendantede (X 0 ,...,X m"1 Ene et,onpeu tcalcu lerlesloist rajectoriellesdelachaîne deMarkovd écalée: P[X m =y 0 ,X m+1 =y 1 ,...,X m+n =y n x 0 ,x 1 ,...,x m!1 P[X 0 =x 0 ,...,X m"1 =x m"1 ,X m =y 0 ,...,X m+n =y n x 0 ,x 1 ,...,x m!1 0 (x 0 )P(x 0 ,x 1 )···P(x m"1 ,y 0 )P(y 0 ,y 1 )···P(y n"1 ,y n 0 P m )(y 0 )P(y 0 ,y 1 )···P(y n"1 ,y n m (y 0 )P(y 0 ,y 1 )···P(y n"1 ,y n etceson tbiencelles d'unechaînedematrice Petdemesure initiale" m

102.CH AÎNESD EMARKOV

quotesdbs_dbs47.pdfusesText_47
[PDF] matrices et suites exercices

[PDF] matrices exercice

[PDF] matrices exercices corrigés pdf

[PDF] matrices exercices corrigés pdf ect

[PDF] matrices qui commutent definition

[PDF] MATRICES SPÉ MATH TERMINALE ES

[PDF] Matrices Spécialité Maths

[PDF] Matrices système maths spe

[PDF] matrices terminale es spé maths

[PDF] Matrices, valeurs propres et vecteurs propres

[PDF] matriochka signification

[PDF] matrix hair careers

[PDF] mattek sands blessure

[PDF] mattek sands blessure wimbledon

[PDF] mattek sands genou