[PDF] METHODE DU PIVOT DE GAUSS Il y a une infinité





Previous PDF Next PDF



Exercices corrigés

Exercice 4.6. Les matrices suivantes sont-elles inversibles ? Si oui calculer leur inverse par la méthode de Gauss-Jordan. F =. 1 2 3 4. 4 8 1 3.



[PDF] Exo7 - Exercices de mathématiques

Gauss en inversant la matrice des coefficients



Méthode de Gauss-Jordan Calcul de linverse dune matrice

A vérifier en exercice. Donc moins intéressant que l'algorithme de. Gauss. Mais application intéressante pour le calcul de l'inverse d'une matrice. 6. Calcul 



1 Méthode de Gauss et factorisation LU

Analyse numérique - TD6 & TD 7 - Corrigé C'est cette méthode que l'on généralisera ci-dessous dans l'exercice 2



Untitled

8 mars 2018 l'algorithme de Gauss. Quelles sont les variables libres de ce syst ... Exercices Corrigés. Matrices. Exercice 48 – Tij(λ) étant la matrice ...



Analyse Numérique Analyse Numérique

Exercice 7.3 Écrire un algorithme de tridiagonalisation d'une matrice symétrique réelle. Exercice 7.4 Effectuer les deux premières itérations de la méthode ...



Chapitre 3 Méthode du simplexe

Pour calculer la solution de base (45



Étape A : processus délimination de Gauss

Exercice 5. 1. Résoudre le système linéaire Ax = b par la méthode d'élimination de Gauss dans les trois cas suivants : a-. A = ⎡. ⎣. 2. 4. 6. −2. 1. 1. −1 



Analyse Numérique

2.1.2 Méthode d'elimination de Gauss et décomposition LU.. . 6. 2.1.3 2.3 Exercices. Exercice 1. On veut résoudre le système linéaire Ax = b où. A ...



Exercices de mathématiques - Exo7

Exercice 1. 1. Résoudre de quatre manières différentes le système suivant (par substitution par la méthode du pivot de Gauss



Untitled

8 mar 2018 l'algorithme de Gauss. Quelles sont les variables libres de ce syst`eme ? 2) Résoudre le syst`eme E. Vérifier les calculs. Exercice 11 ...



Méthode de Gauss-Jordan Calcul de linverse dune matrice

Méthode de Gauss-Jordan. Variante de la méthode de Gauss (gauss1): A vérifier en exercice. Donc moins intéressant que l'algorithme de. Gauss.



Exercices du chapitre 3 avec corrigé succinct

donc le système Ax = b n'a pas de solution. Exercice III.29 Ch3-Exercice29. Utiliser la méthode d'élimination de Gauss pour résoudre Ax = b avec.



feuilles de travaux dirigés

x1. +x4. = 2. 2x1. +4x2. = ?2 x2. +4x3. = 2 x3. +2x4. = 0 . Exercice 14 (taille des éléments dans la méthode d'élimination de Gauss). Soit A une matrice 



USTV 2011/2012

20 nov 2011 et exercices corrigés. ... Résolution par la méthode du pivot de Gauss en écriture matricielle : ... par la méthode de Gauss-Jordan.



Chapitre 1: Calculs matriciels

la méthode de Gauss-Jordan ; Exercice 1.5 : On considère les matrices suivantes : ... Exercice 1.7 : a) Calculer si possible



Université des Sciences et de la Technologie dOran Mohamed

Ce document propose un recueil d'exercices corrigés d'analyse numérique Considérons la résolution par la méthode d'élimination de Gauss sans échange du ...



Université Aix Marseille Licence de mathématiques Cours dAnalyse

13 ott 2016 L. Sainsaulieu Calcul scientifique cours et exercices corrigés pour le ... Résoudre le système linéaire (1.16) par la méthode de Gauss.



Analyse Numérique

1.5 Exercices du chapitre 1 . 4.4.2.5 Méthode des trapèzes corrigés . . . . . . . . . . . . . . 82 ... 6.2.2.4 Méthode de Gauss-Jordan .

METHODE DU PIVOT DE GAUSS

Laméthode du pivot de Gausspermet la résolution générale des systèmes d"équations linéaires ànéquations etp

inconnues. Elle s"utilise notamment pour leur résolution numérique à l"aide d"unprogramme informatique, et permet la

résolution de systèmes comptant un grand nombre d"inconnues et d"équations (plusieurs centaines, voire plusieurs milliers).

Dans tous les cas, la méthode du pivot de Gauss permet de déterminer si le système a des solutions ou non (et notamment

de savoir s"il est un système de Cramer lorsquen=p). Le cas des systèmes de Cramer à deux ou trois inconnues a été traité

dans le chapitre 4, page 45, de "Toutes les mathématiques" (TLM1).

Lorque le système a des solutions, la méthode du pivot permet de les calculer. Notamment, sin=pet si le système a une

solution unique (système de Cramer), on peut la calculer de manière beaucoup plus économique (en nombre d"opérations)

que par les formules de Cramer. Lorsque la solution du système n"est pas unique, la méthode du pivot permet d"exprimer les

solutions à l"aide desinconnues principales.

1 Etude d"un exemple

Reprenons le système de l"exemple 4.8 de TLM1 (page 47), qui est un système de Cramer : S)8 :x+y+2z= -1(1)

2x-y+2z= -4(2)

4x+y+4z= -2(3)

On peut résoudre le système(S)enéliminantd"abord l"inconnuexdans les équations(2)et(3);ce qui peut se faire

en multipliant l"équation (1) par 2 et en la soustrayant à l"équation (2), et en la multipliant par 4 et en la soustrayant à

équivalent:

S1)8 :x+y+2z= -1(1) -3y-2z= -2(2) -3y-4z=2(3)

On peut maintenant éliminerydans la troisième équation grâce à l"opération(3) (3) - (2):On obtient le système

équivalent :

S2)8 :x+y+2z= -1(1) -3y-2z= -2(2) -2z=4(3)

3) -12

(3):Cela donnezet le système équivalent : S3)8 :x+y+2z= -1(1) -3y-2z= -2(2) z= -2(3) obtenir le système équivalent : S4)8 :x+y=3(1) -3y= -6(2) z= -2(3) (2);on obtientyet le système équivalent : S5)8 :x+y=3(1) y=2(2) z= -2(3) S6)8 :x=1(1) y=2(2) z= -2(3)

Ainsi, par une suite d"opérations élémentaires sur les équations du système, on a montré que le système(S)avait une

solution uniquex=1; y=2; z= -2:

On conçoit bien cependant que l"écriture du système sous forme d"équations n"est pas la mieux adaptée à cette suite

d"opérations. En fait, la seule chose qui compte vraiment, c"est de connaître lescoe¢ cients des inconnueset lesecond

membredu système.

L"idée de la méthode du pivot de Gauss consiste donc à remplacer le système(S)par une matrice faisant intervenir à

la fois des coe¢ cients des inconnues et le second membre du système, exactement dans l"ordre dans lequel ils apparaissent.

Cette matrice s"appelle lamatrice augmentéeassociée à(S):Dans notre exemple, elle s"écrit

G=0 @1 1 2-1

2-1 2-4

4 1 4-21

A

2 M3;4(R):

Les opérations sur leséquationsdu système reviennent alors à des opérations sur leslignesde la matrice augmentée :

G=0 @1 1 2-1

2-1 2-4

4 1 4-21

A

L2 L2-2L1L3 L3-4L1G

1=0 @1 1 2-1

0-3-2-2

0-3-4 21

A

L3 L3-L2G2=0

@1 1 2-1

0-3-2-2

0 0-2 41

A L 3 -12 L3G 3=0 @1 1 2-1

0-3-2-2

0 0 1-21

A

L2 L2+2L3L1 L1-2L3G

4=0 @1 1 0 3

0-3 0-6

0 0 1-21

A L 2 -13 L2G 5=0 @1 1 0 3

0 1 0 2

0 0 1-21

A

L1 L1-L2G6=0

@1 0 0 1

0 1 0 2

0 0 1-21

A La matriceG6exprime que(S)a une solution unique,x=1; y=2; z= -2:

2 Méthode du pivot de Gauss

2.1 Démarrage

Dans le cas général, nous considérons un système linéaire(S)ànéquations etpinconnuesx1; x2;...,xp:

(S)8 >>:a

11x1+a12x2++a1pxp=b1

a

21x1+a22x2++a2pxp=b2...

a n1x1+an2x2++anpxp=bn

On note comme d"habitude (TLM1, page 544)

A=0 B @a

11a12a1p......

a n1an2anp1 C

A2 Mn;p(K); B=0

B @b 1... b n1 C

A2 Mn;1(K); X=0

B @x 1... x 11 C

A2 Mp;1(K)

TLM1Méthode du pivot de Gauss3respectivement la matrice associée au système , le vecteur colonne associé au second membre, et le vecteur colonne des

inconnues. Ainsi la résolution de(S)équivaut à trouverXtel que AX=B:

En pratique, on dispose le système en matrice sans les inconnues. Lamatrice augmentéeassociée au système est

A 0=0 B @a

11a12a1pb1.........

a n1an2anpbn1 C

A2 Mn;p+1(K):

On opère alors uniquement sur les lignes deA0. La méthode du pivot consiste d"abord à amener le système à unsystème

triangulaire, ceci uniquement par opérations élémentaires sur les lignes.

On suppose que la première colonne n"est pas identiquement nulle (sinon l"inconnuex1n"apparait pas!), ainsi quitte à

permuter les lignes, on suppose quea116=0. Ce coe¢ cienta11est ditpivot, l"inconnuex1est dite uneinconnue principale.

Par opérations élémentaires sur les lignes, on "met"des0sous le pivot : 0 B BB@a

11a12a1pb1

a

21a22a2pb2............

a n1an2anpbn1 C CCA! L

2 L2-a21a

11L1 L n Ln-an1a 11L10 B BB@a 11a

12a1pb1

0 a

022a02pb02............

0 a

0n2a0npb0n1

C

CCA=F:

Deux cas peuvent alors se présenter, en fonction de la matrice A 0=0 B @a

022a02p......

a

0n2a0np1

C A:(1)

2.2 Premier cas

la dernière ligne de la matriceFci-dessus représente les équations 8>< :0x

2+0x3++0xp=b02...

0x

2+0x3++0xp=b0n

principale) en fonction dex2;; xn(inconnues ditessecondaires). Chaque valeur des inconnues secondaires donne une

solution du système. Le rang du système est1: il est égal au nombre d"inconnues principales et au rang de la matriceAdu

système (TLM1, dé...nition 45.10, page 596).

Les relationsb02==b0n=0sont ditesrelations de compatibilité. Si elles ne sont pas véri...ées, le système n"a pas de

solution. Exemple 1Soitaun paramètre. Considérons le système S)8 :x+2y-z=1

2x+4y-2z=2

-x-2y+z=a

En l"écrivant sous forme matricielle et en prenant le 1 qui ...gure en haut et à gauche comme pivot, il vient

TLM1Méthode du pivot de Gauss40

@12-1 1

2 4-2 2

-1-2 1 a1 A

L2 L2-2L1L3 L3+L10

@1 2-1 1

0 0 0 0

0 0 0 a+11

A

Ainsi(S)est équivalent au système suivant :

S0)8 :x+2y-z=1 0=0 0=a+1

Ce système a une solution si et seulement sia= -1. Dans ce cas, on exprime les inconnues principales en fonctions des

inconnues secondaires, et (S), 8 :x=1-2y+z y=y z=z

L"ensemble des solution estS=8

>>>>:0 @x y z1 Aquotesdbs_dbs13.pdfusesText_19
[PDF] méthode de gauss matrice

[PDF] méthode de gauss matrice pdf

[PDF] methode de gauss resolution systeme

[PDF] méthode de gestion du temps pdf

[PDF] methode de horner

[PDF] methode de l'anthropologie

[PDF] méthode de la sécante exercice corrigé

[PDF] méthode de la sécante python

[PDF] methode de la variation de la constant

[PDF] methode de lecture syllabique gratuite

[PDF] méthode de lecture syllabique pour apprendre ? lire pas ? pas pdf

[PDF] methode de maintenance pdf

[PDF] Méthode de Mémoire

[PDF] Méthode de Newton

[PDF] methode de newton analyse numerique exercices corrigés