[PDF] LES SUITES c) la suite (un) est





Previous PDF Next PDF



SUITES ARITHMETIQUES ET SUITES GEOMETRIQUES

Méthode : Démontrer si une suite est arithmétique (un) est une suite arithmétique de raison -9. ... Considérons la suite arithmétique (un) tel que u.



Montrer quune suite est arithmétique

Exercice 1. Soit la suite (un) définie par un = ?6n + 7 pour tout entier naturel n. Démontrer que la suite (un) est arithmétique. Exercice 2. Soient les suites 



Correction : montrer quune suite est ou nest pas arithmétique

Exercice 1 (Montrer qu'une suite n'est pas arithmétique). Pour montrer que la suite (un) n'est pas arithmétique on calcule les 3 premiers termes.



Suites arithmétiques et suites géométriques Fiche

Pour montrer qu'une suite (U ) n'est pas arithmétique il suffit de calculer les 3 premiers termes U



LES SUITES

c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est DÉMONTRER QU'UNE SUITE EST ARITHMÉTIQUE. Une suite (un) est ...



Fiche de synthèse sur les suites Fiche de synthèse sur les suites

Comment montrer qu'une suite (Un) est arithmétique ? On calcule la différence Un+1 - Un si cette différence est un réel ne dépendant pas de n. (constant) 



SUITES NUMERIQUES

Exprimer un+1 – un en fonction de n et montrer que un+1 – un < 0 pour tout n pour démontrer qu'une suite est arithmétique



Les suites

pour n ? 3 est une suite arithmétique de raison ?5. Remarque : Pour montrer qu'une suite est arithmétique : ? On calcule la différence un+1.



Suites

entier naturel n: un+1 = un +r (« on passe d'un terme au suivant en ajoutant toujours le même nombre »). Méthode pour montrer qu'une suite est arithmétique : Il 



Fiche méthode n°5 – Suites numériques un >1 . un+2=aun+1+b un

Ajuster ces arguments convenablement pour montrer qu'une suite est minorée. Pour montrer qu'une suite est arithmétique : On montre que pour tout entier n

C

HAPITRE

1

LES SUITES

1.1Généralités sur les suitesDé“nition 1.1.1

Une suite(u

n )est une fonction définie de?dans?.Onnote(u n n?-→u n ?u n est appelé le terme général de la suite(u n ?Attention donc à bien faire la différence entre(u n )(la suite) etu n (un seul terme). ?On pourra noter indifféremment(u n )ou tout simplementu. ?Variations, monotonie d"une suiteDé“nition 1.1.2

Soit(u

n )une suite. On dit que : a)la suite(u n )estcroissantesi pour toutn??:u n ?u n+1 b)la suite(u n )estdécroissantesi pour toutn??:u n ?u n+1 c)la suite(u n )estmonotonesi elle est croissante ou décroissante; d)la suite(u n )estconstantesi pour toutn??:u n+1 =u n ?Il existe des suites qui ne sont ni croissantes, ni décroissantes :u n =(-1) n

?Les premiers termes de la suite n"entrent pas forcément en compte dans la variation d"une suite. Ils

peuvent cependant donner une indication sur la monotonie de la suite.

CHAPITRE11

1 ?Méthodes de détermination du sens de variation d"une suite

MÉTHODE1. ... SENS DE VARIATION DUNE SUITE

Pour déterminer le sens de variation d"une suite(u n ), on peut utiliser l"une des règles suivantes : a)On étudie le signe de la différenceu n+1 -u n ?Siu n+1 -u n est positive, alors la suite(u n )est croissante. ?Siu n+1 -u n est négative, alors la suite(u n )est décroissante. b)Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer le rapportu n+1 u n

à1.

?Siu n+1 u n ?1, alors la suite(u n )est croissante. ?Siu n+1 u n ?1, alors la suite(u n )est décroissante. c)Si la suite(u n )est définie explicitement :u n =f(n), alors il suffit d"étudier les variations de la fonction fsur l"intervalle0;+∞.Lasuite(u n )et la fonctionfont le même sens de variation. d)On utilise un raisonnement par récurrence (voirsection 2).

Il est bien évident que chacune de ces méthodes est adaptée au type de suite à laquelle nous serons

confrontés.

Exemple

Déterminer le sens de variation des suites suivantes en utilisant la règle la mieux adaptée.

a)Pour toutn??,u n =n 2 -n. b)Pour toutn?? ,u n =2 n n. c)Pour toutn?2,u n =2n-1 n+1. a)Pour toutn??, u n+1 -u n =(n+1) 2 -(n+1)-(n 2 -n)=2n?0.

Par conséquent, la suite(u

n )est croissante. b)Ici on étudie le rapportu n+1 u n . Pour toutn?1 u n+1 u n =2 n+1 n+1 2 n n= 2 n+1 n+1×n2 n =2n n+1=n+nn+1?1.

Ainsi, la suite(u

n )est croissante. c)On au n =f(n)oùf(x)=2x-1 x+1.Lafonctionfest dérivable sur0;+∞et pour toutx?0,

2LES SUITES

2

Chapitre 1

f (x)=3 (x+1) 2 >0. La fonctionfest donc strictement croissante sur0;+∞. On déduit que la suite(u n )est aussi strictement croissante. ?Suite arithmétique

Dé“nition 1.1.3

Une suite(u

n n?? est arithmétique s"il existe un réelrindépendant dentel que, pour toutn??, u n+1 =u n +r

Le nombrerest appelé la raison de la suite(u

n

Exemple 1

La suite(u

n )définie par :u 0 =2etu n+1 =u n +3(n??) est arithmétique. Ici la raison estr=3. MÉTHODE2. - DÉMONTRER QU"UNE SUITE EST ARITHMÉTIQUE

Une suite(u

n

)est arithmétique si la différence entre deux termes consécutifs est constante. Cette constante

est alors la raison de la suite.

Ainsi, si pour toutn??,u

n+1 -u n =r, alors la suite(u n )est arithmétique de raisonr.

Exemple

Soit(u

n )la suite définie pour toutn??par :u n =4n-1. Montrer que(u n )est arithmétique.

Pour toutn??:

u n+1 -u n =4(n+1)-1-4n+1=4.

Par conséquent, la suite(u

n )est bien arithmétique de raisonr=4.

Propriété 1.1.4

A)Expression du terme général en fonction den: ?si le premier terme estu 0 ,alors:u n =u 0 +nr; ?si le premier terme estu p (pB)Somme des premiers termes:siSdésigne la somme de termes consécutifs d"une suite arithmétique,

alors :

S=(Nombre de termes)×

1 er terme+dernier terme 2

CHAPITRE13

3

Les suites

?Suite géométrique

Dé“nition 1.1.5

Une suite(u

n n?? est géométrique s"il existe un réelqindépendant dentel que, pour toutn??, u n+1 =q.u n

Exemple 2

a)La suite(u n )définie par :u 0 =2etu n+1 =3u n pour toutn??.

Ici la raison estq=3.

b)La suite(v n )définie par :v 0 =-3etv n+1 =v n

4pour toutn??.

La suite(v

n )est-elle géométrique? MÉTHODE3. - DÉMONTRER QU"UNE SUITE EST GÉOMÉTRIQUE

Pour justifier qu"une suite(u

n )est géométrique, il suffit d"utiliser la définition suivante.

Une suite(u

n )est géométrique si l"on peut écrireu n+1 sous la forme :u n+1 =qu n . Le nombre réelqest alors la raison de la suite géométrique(u n

Exemple

Soit(u

n )la suite définie pour toutn??par :u n =3 2 n .Montrerque(u n )est géométrique. On précisera le premier terme et la raison.

Pour toutn??,

u n+1 =3 2 n+1 =1

2×32

n =1 2u n

Par conséquent, la suite(u

n )est bien géométrique de raisonq=1 2. Une autre méthode (reposant aussi sur la définition) consiste à prouver que le rapportu n+1 u n est constant, mais il faut s"assurer que les termesu n ne s"annulent pas.

4LES SUITES

4

Chapitre 1

Propriété 1.1.6

Si(u n )est une suite géométrique de raisonq: A)Expression du terme général en fonction den: ?si le premier terme estu 0 ,alors:u n =u 0 q n ?si le premier terme estu p (pB)Somme des premiers termes: si

Sdésigne la somme de termes consécutifs d"une suite géométrique de raisonq(q?=1), alors :

S=(1 er terme)×1-q nombre de termes 1-q

1.2Le raisonnement par récurrence

?Introduction et intérêt du raisonnement par récurrence

Exemple

Soit la suite(u

n )définie par : (u n ):"u 0 =0 u n+1 =2u n +1

En calculant les premiers termes de la suite, on peut donc émettre une conjecture quant à la forme

du terme généralu nquotesdbs_dbs47.pdfusesText_47
[PDF] montrer qu'une suite est arithmétique méthode

[PDF] montrer qu'une suite est croissante exemple

[PDF] montrer qu'une suite est de cauchy exercice corrigé

[PDF] montrer qu'une suite est géométrique de raison

[PDF] montrer qu'une suite est géométrique exemple

[PDF] montrer qu'une suite est geometrique ts

[PDF] montrer qu'une suite n'est pas géométrique

[PDF] Montrer que

[PDF] montrer que 2 vecteurs sont orthogonaux

[PDF] montrer que 3 points sont alignés complexe

[PDF] montrer que 3 points sont alignés géométrie dans l'espace

[PDF] montrer que 3 points sont alignés vecteurs

[PDF] montrer que 4 point sont cocycliques

[PDF] montrer que 4 points appartiennent ? un même cercle complexe

[PDF] montrer que 4 points sont coplanaires