[PDF] Corrigé du TD no 11 J. Gillibert. Corrigé du TD





Previous PDF Next PDF



Corrigé du TD no 11

Soient f et g deux fonctions continues R → R. On suppose que : ∀x ∈ Q f(x) = g(x). Montrer que f = g. Réponse : Rappelons d'abord le résultat suivant 



Continuité 1 Théorie

Exercice 10 Soit f : R → R continue en 0 telle que ∀x ∈ R f(x) = f(2x). Montrer que f est constante. 3´Etude de fonctions. Exercice 11 Déterminer les 



Injection surjection

http://exo7.emath.fr/ficpdf/fic00003.pdf



Corrigé du TD no 9

On considère la fonction f définie sur R par f(x) = x sin x. 1. Pour tout n Nous allons montrer que f est constante. Soit x0 ∈ R alors la suite x0 + nT ...



Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et

Exercice 12 : Soit f : R → R continue et décroissante. Montrer que f admet un unique point fixe. Correction :Unicité : Soit g : x ↦→ f(x) − x.



Chapitre 2 Continuité des fonctions réelles

On peut aussi dire que f(x) tend vers l quand x tend vers x0. Pour que ceci ait un sens il faut montrer l'unicité de la limite — quand elle existe. Proposition 



Algèbre linéaire I

Exercice 5 ***. Montrer que (1. √. 2



Chapitre 3 Dérivabilité des fonctions réelles

∀x ∈ Vf(x) − f(x0) ≤ 0. Comme x0 est un point intérieur `a I



Continuité

Montrer que f est non nulle sur un intervalle ouvert contenant a. Exercice 2.2 (Fonction lipschitzienne). Soit f : R → R et k ∈ R+. On suppose que



TD3 – Différentiabilité des fonctions de plusieurs variables Exercice

Montrer d'après la definition que la fonction : f(x y) = x2 + y2 est différentiable dans R2. Calculer la différentielle. Solution. La fonction f est 



Corrigé du TD no 11

J. Gillibert. Corrigé du TD no 11. Exercice 1. Soient f et g deux fonctions continues R ? R. On suppose que : ?x ? Q f(x) = g(x). Montrer que f = g.



Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et

est linéaire et son noyau E est un sous-espace vectoriel de C1. Exercice 10 : Montrer que l'ensemble F des triplets (x y



Corrigé du TD no 9

1. Montrer à partir de la définition donnée en cours



Séance de soutien PCSI2 numéro 8 : Fonctions réelles : limites et

c) Montrer que f : x ?? x + sin. (1 x. )2 n'admet pas de limite en 0. d) h1 + h2 admet-elle une limite en 0 ? e) Montrer que la fonction sin n'admet pas 



Applications linéaires

Exercice 12. Soit E = Rn[X] l'espace vectoriel des polynômes de degré ? n et f : E ? E définie par : f(P) = P+(1?X)P . Montrer que f est une application 



Dérivabilité - Théorèmes de Rolle théorème des accroissements

26 févr. 2015 venons de démontrer que si une fonction dérivable f s'annule (n+1) fois ... f (x) mais pour appliquer le résultat de l'exercice précédent



Continuité 1 Théorie

que la fonction Sup (fg) est continue sur I. Exercice 2 Soient I un intervalle de R et f : I ? R continue telle que ?x ? I



IV. Applications linéaires

Pour montrer que f est une application linéaire il suffit de vérifier que f(u + ?v) = f(u) + Soit f:R3 ? R2 définie par f(x



FONCTIONS DE CLASSE C1

On considère la fonction numérique f de la variable réelle x telle que x. f x x x. 1. Montrer que f est impaire et continue sur . 2. Montrer que f est ...



Continuité

Montrer que f est non nulle sur un intervalle ouvert contenant a. Exercice 2.2 (Fonction lipschitzienne). Soit f : R ? R et k ? R+. On suppose que

CPP - 2013/2014 Fonctions réelles

J. Gillibert

Corrigé du TD n

o11Exercice 1 Soientfetgdeux fonctions continuesR→R. On suppose que : ?x?Q, f(x) =g(x)

Montrer quef=g.

Réponse :Rappelons d"abord le résultat suivant :tout nombre réel est limite d"une suite de nombres rationnels, autrement dit l"adhérence deQest égale àR(on dit queQest dense dansR).

Pour justifier rigoureusement ce résultat, soitαun nombre réel, alors la suite(un)définie par

u n=?10nα?10 n

est une suite de nombres rationnels (et même décimaux) qui converge versα. En effet, par définition de

la partie entière nous avons : 10 d"où : n

ce qui n"est pas très étonnant :unest la valeur approchée par défaut à10-nprès deα. Le théorème des

gendarmes montre que(un)converge versα.

Passons à la résolution de l"exercice proprement dit. Soitαun réel, et soit(un)une suite de nombres

rationnels qui converge versα. Alors, par continuité def, la suitef(un)converge versf(α). De même, par

continuité deg, la suiteg(un)converge versg(α). Maisunest un nombre rationnel, doncf(un) =g(un)

pour toutn. Par unicité de la limite d"une suite, on en déduit quef(α) =g(α).

Exercice 2

1. Montrer que, pour tout couple(a,b)?R2,

max(a,b) =12 (a+b+|a-b|).

Réponse :On distingue deux cas :

- ou biena≥b, dans ce casa-best positif ou nul, donc|a-b|=a-b. Par conséquent : 12 (a+b+|a-b|) =12 (a+b+a-b) =a= max(a,b) - ou biena < b, dans ce casa-best strictement négatif, donc|a-b|=-a+b. Il en résulte que : 12 (a+b+|a-b|) =12 (a+b-a+b) =b= max(a,b) Dans tous les cas la formule est bien vérifiée.

2. Soientfetgdeux fonctions continuesD→R. Soitmax(f,g)la fonction définie par

max(f,g) :D-→R x?-→max(f(x),g(x)) 1

Montrer que cette fonction est continue surD.

Réponse :D"après la question précédente, nous avons : max(f,g) =12 (f+g+|f-g|). Or la fonctionf-gest continue (comme différence de deux fonctions continues) et la fonction valeur absolue est continue, donc la fonction|f-g|est continue (comme composée de fonctions continues). Finalement,f+g+|f-g|est la somme de trois fonctions continues, donc est continue, ce qui montre quemax(f,g)est continue.

Exercice 3

1. Montrer que l"équationx5=x2+ 2a au moins une solution sur]0,2[.

Réponse :Soitf(x) =x5-x2-2, alors notre équation se réécritf(x) = 0. La fonctionfest continue surRetf(0) =-2,f(2) = 26. D"après le théorème des valeurs intermédiaires (TVI), comme0est compris entref(0)etf(2), il existe un réelαcompris entre0et2tel quef(α) = 0. Commef(0)etf(2)sont tous les deux non nuls, ce réelαappartient à l"intervalle ouvert]0,2[.

2. Montrer que le polynômex3+ 2x-1a une unique racine qui appartient à l"intervalle]0,1[.

Réponse :Soitf(x) =x3+ 2x-1. La fonctionfest continue dérivable surR, et sa dérivée f ?(x) = 3x2+ 2est strictement positive surR. Par conséquent,fest strictement croissante surR,

donc d"après le théorème de la bijection elle réalise une bijection entre l"intervalle]0,1[et l"intervalle

]f(0),f(1)[=]-1,2[. Ainsi, pour toutr?]-1,2[, il existe un uniquec?]0,1[tel quef(c) =r, d"où le résultat en prenantr= 0.

3. Montrer que l"équationx2(cosx)5+xsinx+ 1 = 0admet au moins une solution réelle.

Réponse :La fonctionf:x?→x2(cosx)5+xsinx+ 1est continue surR. De plus, on calcule que

f(0) = 1et quef(π) = 1-π2. Comme1-π2est négatif, on en déduit d"après le TVI qu"il existe

un réelβcompris entre0etπtel quef(β) = 0.

Exercice 4

Soientn?N?etα?]0,+∞[. Démontrer, en utilisant le théorème de la bijection, que le polynôme

P(X) =Xn-αadmet une unique racine dans]0,+∞[.

Réponse :La fonctionP:x?→xn-αest continue dérivable sur]0,+∞[. Sa dérivéex?→nxn-1est

strictement positive sur]0,+∞[. Par conséquent,Pest strictement croissante, donc, d"après le théorème

de la bijection, elle réalise une bijection entre]0,+∞[et son image, qui est]-α,+∞[. En particulier, il

existe un unique réelc?]0,+∞[tel queP(c) = 0.

Exercice 5

SoitP?R[X]un polynôme de degré impair. Montrer quePadmet une racine réelle.

Réponse :Soitn= 2k+1le degré deP, alors le terme de plus haut degré dePest de la formeax2k+1

aveca?= 0. D"après le cours

P(x)≂+∞ax2k+1

On en déduit que :

limx→+∞P(x) = limx→+∞ax2k+1=a×(+∞) Le même équivalent étant valable en-∞, il vient lim x→-∞P(x) = limx→-∞ax2k+1=a×(-∞)

Ora×(+∞)eta×(-∞)sont deux infinis de signes contraires. La fonctionP:R→Rétant continue, le

théorème des valeurs intermédiaires prouve que l"image deRpar la fonctionPest l"intervalle]-∞,+∞[,

autrement dit la fonctionP:R→Rest surjective (attention : elle n"est pas injective en général). En

particulier,0admet au moins un antécédent parP, ce qu"on voulait.

Exercice 6

Soitf: [0,+∞[→[0,+∞[une fonction continue, qui tend vers0quandx→+∞. 2

1. On distingue deux cas : ou bienfest la fonction nulle, dans ce cas il n"y a rien à montrer, ou bien

fn"est pas toujours nulle, dans ce cas il existex0?[0,+∞[tel quef(x0)>0. D"autre part, on sait queftend vers0en+∞, donc en appliquant la définition de la limite avecε=f(x0)2 , on trouve qu"il existe un réelA >0tel que Commefest à valeurs dans[0,+∞[, cela se reformule en : (1)

Doncfest bornée sur l"intervalle[A,+∞[. D"autre part, le théorème des bornes montre quefest

f([0,A]) = [m,M]. Il en résulte quefest majorée sur[0,+∞[parmax?

M,f(x0)2

. Mais on constate quex0appartient à[0,A](sinon la propriété (1) serait contredite), doncM≥f(x0)>f(x0)2 . Il en résulte quefest

majorée parMsur[0,+∞[. Or, toujours d"après le théorème de bornes, il existet?[0,A]tel que

f(t) =M, doncfatteint sa borne supérieure.

2. La fonctionfn"atteint pas forcément sa borne inférieure. Par exemple, la fonction

f: [0,+∞[-→[0,+∞[ x?-→1x+ 1 satisfait les hypothèses de l"énoncé, mais n"atteint pas sa borne inférieure (qui est0).

Exercice 7

On considère la fonctionf: [0,+∞[→Rdéfinie par f(x) =x2+xx 2+ 1. a) Soitx?]0,1[, alors0< x2+x < x2+ 1d"où0< f(x)<1. Donc]0,1[est stable parf. Un raisonnement analogue montre que]1,+∞[est stable parf.

b) D"après ce qui précède, étant donnéx0?]0,1[, la suite(xn)définie par la relation de récurrence

x n+1=f(xn)est bien définie, et à valeurs dans]0,1[. c) Pour montrer que(xn)est croissante, il suffit de montrer que ?x?]0,1[, f(x)> x

Or nous avons

f(x)x =x+ 1x 2+ 1 Sixappartient à]0,1[, alorsx2< xdonc0< x2+ 1< x+ 1. Il en résulte quef(x)x est strictement

supérieur à1, d"où le résultat. La suite(xn)est strictement croissante et majorée par1, elle converge

donc vers une certaine limite??]0,1]. Par continuité def, cette limite satisfaitf(?) =?, c"est-à-dire

est un point fixe def. Or l"équationf(?) =?s"écrit 2+??

2+ 1=?

Comme??= 0, on peut diviser par?les deux membres de l"équation : ?+ 1?

2+ 1= 1

3 c"est-à-dire : ?+ 1 =?2+ 1 d"où?2-?= 0, équation dont les solutions sont0et1. Comme??= 0, on en déduit que?= 1.

Exercice 8

1. Soitf: [a,b]→[a,b]une fonction continue. Montrer qu"il existex0?[a,b]tel quef(x0) =x0.

Réponse :Considérons la fonctiongdéfinie par g: [a,b]-→R x?-→f(x)-x Commefest continue,gl"est aussi. Il est clair par construction degque notre problème se ramène à montrer l"existence d"un réelx0?[a,b]tel queg(x0) = 0. D"autre part : g(a) =f(a)-a≥0carf(a)appartient à[a,b], en particulierf(a)≥a

De même :

Donc0est compris entreg(a)etg(b). D"après le théorème des valeurs intermédiaires, il existe donc

x

0?[a,b]tel queg(x0) = 0, CQFD.

2. Montrer que l"équationcosx=xadmet une solution comprise entre0et1.

Réponse :Commecos([0,π2

]) = [0,1]et que[0,1]est inclus dans[0,π2 ], on en déduit quecos([0,1])

est inclus dans[0,1]. Il suffit simplement d"appliquer le résultat de la question précédente à la

fonctioncos : [0,1]→[0,1].

3. Donner un exemple de fonction continueg:]0,1[→]0,1[qui n"admet pas de point fixe.

Réponse :La fonctionx?→x2convient.

Exercice 9

SoientIun intervalle deRetf:I→Rune fonction continue. Les propositions suivantes sont elles vraies

ou fausses?

1. SiIest ouvert alorsf(I)est ouvert.

Réponse :C"est faux. Par exemple,sin(]0,2π[) = [-1,1].

2. SiIest fermé alorsf(I)est fermé.

Réponse :C"est faux (mais la question est légèrement hors programme). En effet, l"intervalle

[1,+∞[est fermé (car son complémentaire]- ∞,1[est ouvert), et la fonctionx?→1/xréalise une

bijection continue entre[1,+∞[et]0,1], qui n"est pas fermé.

3. SiIest borné, alorsf(I)est borné.

Réponse :C"est faux. Par exemple, l"image de]0,1]par la fonctionx?→1/xest[1,+∞[.

4. SiIest fermé borné, alorsf(I)est fermé borné.

Réponse :C"est vrai, d"après le théorème des bornes.

Exercice 10

Soitf:R→Rla fonction définie par

f(x) =11 +x2

1. La fonctionfest continue. De plus, la fonctionx?→1 +x2est strictement croissante, à valeurs

positives, sur[0,+∞[. Par conséquent,fest strictement décroissante sur ce même intervalle. D"après

le théorème de la bijection,fréalise une bijection de[0,+∞[sur son image, qui est : f([0,+∞[) =] limx→+∞f(x),f(0)] =]0,1] 4

2. D"après le théorème de la bijection, l"applicationf-1:]0,1]→[0,+∞[est continue, strictement

décroissante (car de même sens de variation quef).

3. On calcule que :

f -1(y) =?1 y -1. (pour un calcul plus détaillé d"une bijection réciproque, voir l"exercice suivant).

Exercice 11

1. Soit la fonctionf: [-1,+∞[→R, définie par

f(x) =1⎷x

2+ 2x+ 2.

La fonctionx?→x2+ 2x+ 2étant strictement croissante sur[-1,+∞[, à valeurs positives, la

fonctionx?→⎷x

2+ 2x+ 2l"est aussi. Par conséquent, la fonctionfest strictement décroissante sur

[-1,+∞[. D"après le théorème de la bijection, la fonctionfétant continue strictement décroissante,

elle réalise une bijection entre l"intervalle[-1,+∞[et son image. En outre : f([-1,+∞[) =] limx→+∞f(x),f(-1)] =]0,1].

Il nous reste à déterminer la bijection réciproquef-1. Pour cela, on se donney?]0,1], et on cherche

à déterminer (en fonction dey) l"uniquex?[-1,+∞[tel quef(x) =y. Cette équation s"écrit :

1⎷x

2+ 2x+ 2=y

commeyest strictement positif, cette équation équivaut à : x

2+ 2x+ 2 =1y

2 c"est-à-dire : (x+ 1)2=1y 2-1

(notez bien l"idée de passer à la forme canonique, qui évite la lourdeur de la résolution d"une équation

de degré2enxdont le discriminant dépend dey!). Commex+ 1est positif, on en déduit que x+ 1 =?1 y 2-1

Ainsi :

f -1(y) =x=?1 y

2-1-1.

2. On sait que la fonction tangente réalise une bijection entre]-π2

,π2 [etR. Il nous faut donc trouver un intervalleItel que la fonctionh:x?→x3réalise une bijection entreIet]-π2 ,π2 [. On voit bien que cet intervalle estI=]-3?π 2 ,3?π 2 [. Plus précisément,Iest l"image de]-π2 ,π2 [par la bijection réciproque de la fonctionh:x?→x3. On a donc le diagramme suivant ]-3?π 2 ,3?π 2 [-----→h:x?→x3]-π2 ,π2 [----→tanR dans lequel les deux fonctions sont bijectives. Donc leur composéeg= tan◦hest bijective, et la fonction réciproqueg-1est obtenue en composant les fonctions réciproques dans l"autre sens, c"est-à-dire : g -1=h-1◦arctan

Plus explicitement :

g -1(y) =?

3⎷arctanysiy≥0

3⎷-arctanysiy <0

5

Exercice 12

On considère la fonctionf:R→Rdéfinie par f(x) =?xsix?Q

1-xsix??Q

1. Pour déterminer l"applicationf◦fon distingue deux cas

- six?Q, alorsf(x) =x, doncf(f(x)) =f(x) =x. - six /?Q, alorsf(x) = 1-x. De plus,xétant irrationnel,1-xl"est aussi, donc f(1-x) = 1-(1-x) =x.

Dans tous les cas, on a montré quef(f(x)) =x, c"est-à-dire quef◦f= idR. Rappelons (voir le

cours d"algèbre) que, sifetgsont deux fonctions telles quef◦g= idetg◦f= id, alorsfetgsont

bijectives, et réciproques l"une de l"autre. Ce résultat s"applique bien dans notre cas, en prenant les

deux fonctions égales àf. On en déduit quefest bijective, et quef-1=f.

2. Pour voir quefn"est pas monotone, on doit montrer qu"elle n"est ni croissante, ni décroissante.

Nous avons :

f(0) = 0, f(1) = 1etf(⎷2) = 1-⎷2(car⎷2est irrationnel). d"où : f(0)< f(1)etf(1)> f(⎷2) La première inégalité montre quefn"est pas décroissante, la seconde montre quefn"est pas

croissante. Il reste à voir quefn"est pas continue surR. Pour cela, il suffit de trouver un pointx0

où elle n"est pas continue. Choisissonsx0=⎷2. Rappelons quef(⎷2) = 1-⎷2. D"autre part, soit

(un)une suite de nombres rationnels qui converge vers⎷2(une telle suite existe d"après l"ex. 1),

alorsf(un) =unpour toutn, donc la suitef(un)converge vers⎷2, autrement dit : lim n→+∞f(un) =⎷2?=f(⎷2). D"après le critère séquentiel,fn"est donc pas continue en⎷2.

Exercice 13

Soith:R→Rune fonction continue telle que :

?x?R, h(x) =h?x2

Montrer quehest constante.

Réponse :On se donne un réelx. Par une récurrence immédiate, on voit que : h(x) =h?x2 n? pour tout entiern≥1.

Comme la suite

?x2 n?converge vers0, par continuité dehla suiteh?x2 n?converge versh(0). Or la suite h?x2

n?est constante égale àh(x)d"après ce qui précède. Donch(x) =h(0). Ainsi nous avons démontré

que la fonctionhest constante, égale àh(0).

Exercice 14

Soitf: [0,1]→Rune fonction continue telle quef(0) =f(1), et soitp≥1un entier fixé. Montrer qu"il

existe un réelxp?[0,1]tel que f? x p+1p =f(xp). 6 Réponse :On considère la fonctionhdéfinie par : h:?

0,1-1p

-→R x?-→f? x+1p -f(x)

Alorshest continue, et le problème de départ équivaut à trouver un réelxptel queh(xp) = 0.

Nous avons :

h(0) =f?1p -f(0) h ?1p =f?2p -f?1p h?p-1p =f(1)-f?p-1p

En sommant le tout, on trouve que :

p-1? k=0h?kp =f(1)-f(0) = 0. On en déduit qu"il existe deux entiersietjaveci < jtels que0soit compris entreh? ip eth?jp

En effet, si une somme de termes est nulle, alors ou bien tous les termes sont nuls, ou bien certains sont

positifs et d"autres sont négatifs. Il suffit alors d"appliquer le théorème des valeurs intermédiaires à la

fonctionhsur l"intervalle? ip ,jp 7quotesdbs_dbs47.pdfusesText_47
[PDF] montrer que ga+gb+gc = 0

[PDF] Montrer que l'ecologie est un retoure en arriere ! Besoin d'aide Svp :D

[PDF] montrer que l'émancipation des femmes passe par l'éducation qui leur est donné dans leur famille et ? l'école

[PDF] Montrer que l'incipit de Voyage Au Bout De La Nuit fait l'objet d'une mise en forme poétique

[PDF] montrer que l'inégale développement de l'Inde est aussi spatial

[PDF] montrer que l'activité sportive contribue ? la lutte contre l obésité

[PDF] montrer que l'eau est un bien economique

[PDF] montrer que lhypophyse controle le fonctionnement cyclique des ovaires

[PDF] montrer que l'ovule est une cellule et qu'il est emis de maniere cyclique

[PDF] montrer que la célérité des ondes dépend de la profondeur de l eau

[PDF] montrer que la determination du salaire peut dependre de l'intervention de l'etat

[PDF] montrer que la fiscalité peut contribuer ? la justice sociale corrigé

[PDF] montrer que la fiscalité peut contribuer ? la justice sociale ec1

[PDF] montrer que la france est un carrefour européen

[PDF] montrer que la photosynthèse est responsable de l'incorporation de l énergie solaire