[PDF] [PDF] Équations différentielles - Exo7 - Exercices de mathématiques





Previous PDF Next PDF



Fiche exercices (avec corrigés) - Equations différentielles

Fiche exercices (avec corrigés) - Equations différentielles. Exercice 1 La solution générale de l'équation homog`ene est y(x) = C e-A(x) = C e4 x.



Équations différentielles

Résoudre sur R les équations différentielles suivantes : Exercice 4 Variation de la constante ... Exercice 11 Équations de Bernoulli et Riccatti.



Équations différentielles

(a) On pose g(x) = f(ex) vérifier que g est solution de (E). (b) En déduire une expression de f. 1. Page 2. Exercice 6 



Équations différentielles linéaires

Corrigé du TD “Équations différentielles” Corrigé ex. 30: Équations d'ordre 1 à ... qui est une équation à variables séparables (voir l'exercice 42).



Exercices corrigés sur les équations différentielles

Equations linéaires d'ordre 1. Exercice 1 : Résoudre l'équation x.( 1 – x ).y' + y = x. Solution : 



Chapitre 14 — équations différentielles linéaires — exercices

Chapitre 14 — équations différentielles linéaires — exercices corrigés page 1. Équations différentielles linéaires du premier ordre. Exercice 1.



Rappels de Mathématiques ISTIL 1ère année Corrigé

Corrigé. 1. ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES. Exercice 1.1. Rappel : solution d'une équation différentielle du premier ordre. L'équation différentielle.



Série dexercices no6/6 Équations différentielles

Équations différentielles. Exercice 1. Corrigé no 7. Équations ... En cherchant une solution constante de l'équation différentielle on trouve.



CORRIGÉ

CORRIGÉ. TD 7 : Étude qualitative d'un syst`eme d'équations différentielles. Exercice 1. On étudie la compétition entre deux populations de scorpions du 



TD 5 Transformation de Laplace

Oct 14 2016 Exercices corrigés. ... équations différentielles linéaires. ... Exercice 9 : On considère l'équation différentielle (1) y'' + 2y' + y ...



[PDF] Fiche exercices (avec corrigés) - Equations différentielles

Fiche exercices (avec corrigés) - Equations différentielles Exercice 1 Donner l'ensemble des solutions des équations différentielles suivantes :



[PDF] Équations différentielles - Exo7 - Exercices de mathématiques

Exercice 4 Variation de la constante Résoudre les équations différentielles suivantes en trouvant une solution particulière par la méthode de variation



[PDF] Équations différentielles linéaires

Corrigé du TD “Équations différentielles” Équations différentielles linéaires Corrigé ex 30: Équations d'ordre 1 à coefficients constants



[PDF] Equations différentielles

Résoudre les équations différentielles (x ? 1)y + xy = x2 ? 1 et (x ? 1)y + xy = sinx sur I et J Exercice 2 Voir le corrigé manuscrit Exercice 5



Exercices corrigés -Équations différentielles linéaires du premier ordre

Exercices corrigés - Équations différentielles linéaires du premier ordre - résolution applications Résolution pratique Exercice 1 - Problème de Cauchy 



[PDF] calcul de primitives Exercice 2 : équations différentielles

Résoudre les équations différentielles suivantes sur des intervalles appropriés : 1) x/ = 5x 2) x/ + 3t2x = t2 3) t2x/ + tx = 1 4) tx/ x = t2 sin(t)



Equations différentielles : Cours-Résumés-Exercices corrigés

Equations différentielles : Cours-Résumés-Exercices corrigés · I- Équation différentielle linéaire · II- Équation différentielle linéaire du premier ordre · III- 



[PDF] Equations Différentielles Ordinaires Cours et exercices dapplications

Voir le cas 4 exercice 1 13 1 7 Type VII : Equations différentielles non résolues par rapport à la dérivée 1 7 1 Equations du premier ordre de degré n en 



[PDF] Exercices corrigés sur les équations différentielles

Exercices corrigés sur les équations différentielles 1 Les procédures Maple 2 Equations linéaires d'ordre un 3 Equations et systèmes linéaires à 



[PDF] Rappels de Mathématiques ISTIL 1ère année Corrigé

Corrigé 1 ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES Exercice 1 1 Rappel : solution d'une équation différentielle du premier ordre L'équation différentielle

  • Comment résoudre les équations différentielles ?

    Résoudre une telle équation différentielle, c'est trouver toutes les fonctions dérivables y définies sur I à valeurs dans R ou C vérifiant, pour tout x?I x ? I , y?(x)+a(x)y(x)=b(x) y ? ( x ) + a ( x ) y ( x ) = b ( x ) . Dans la suite, on supposera toujours que a,b sont continues sur I .
  • Comment résoudre une équation différentielle de Bernoulli ?

    z ? = ( 2 a ( t ) y 0 ( t ) + b ( t ) ) z + a ( t ) z 2 . On obtient donc une équation de Bernoulli, que l'on sait résoudre. Il s'agit des équations différentielles du type y=a(y?)t+b(y?). y = a ( y ? ) t + b ( y ? ) .
  • Comment résoudre une équation différentielle du premier ordre avec second membre ?

    b) Equation avec second membre : Considérons l'équation ay" + by' + cy = d(x). Soit y0 solution de cette équation. On remarque alors que, comme dans le cas des équations du premier ordre : Page 9 - 9 - i) si z est solution de l'équation homogène associée, alors y0 + z est solution de l'équation complète.
  • Résolution de l'équation différentielle y? + 2y = 0 dont la solution f vérife f(0) = 1 : Les solutions sont du type f(x) = ke?2x où k est une constante réelle. f(0) = 1 ?? ke?2? = 1 ?? k = 1, D'où f(x) = e?2x. où A et B sont des constantes réelles. y = 0, on prend ? = 1 3 .
Exo7

Équations différentielles

Fiche de Léa Blanc-Centi.

1 Ordre 1

Exercice 1Résoudre surRles équations différentielles suivantes:

1.y0+2y=x2(E1)

2.y0+y=2sinx(E2)

3.y0y= (x+1)ex(E3)

4.y0+y=xex+cosx(E4)

Déterminer toutes les fonctionsf:[0;1]!R, dérivables, telles que

8x2[0;1];f0(x)+f(x) =f(0)+f(1)

1.

Résoudre l"équationdifférentielle(x2+1)y0+2xy=3x2+1surR. Tracerdescourbesintégrales. Trouver

la solution vérifianty(0) =3. 2.

Résoudre l"équation dif férentielley0sinxycosx+1=0 sur]0;p[. Tracer des courbes intégrales.

Trouver la solution vérifianty(p4

) =1. de la constante :

1.y0(2x1x

)y=1 sur]0;+¥[

2.y0y=xkexp(x)surR, aveck2N

3.x(1+ln2(x))y0+2ln(x)y=1 sur]0;+¥[

On considère l"équation différentielle

y

0exey=a

Déterminer ses solutions, en précisant soigneusement leurs intervalles de définition, pour 1 1.a=0

2.a=1 (faire le changement de fonction inconnuez(x) =x+y(x))

Dans chacun des cas, construire la courbe intégrale qui passe par l"origine.

Pour les équations différentielles suivantes, trouver les solutions définies surRtout entier :

1.x2y0y=0(E1)

2.xy0+y1=0(E2)

Exercice 7Résoudre

1.y003y0+2y=0

2.y00+2y0+2y=0

3.y002y0+y=0

4.y00+y=2cos2x

On considèrey004y0+4y=d(x). Résoudre l"équation homogène, puis trouver une solution particulière

lorsqued(x) =e2x, puisd(x) =e2x. Donner la forme générale des solutions quandd(x) =12 ch(2x). Résoudre sur]0;p[l"équation différentielley00+y=cotanx, où cotanx=cosxsinx.

Résoudre les équations différentielles suivantes à l"aide du changement de variable suggéré.

1.x2y00+xy0+y=0, sur]0;+¥[, en posantx=et;

2.(1+x2)2y00+2x(1+x2)y0+my=0, surR, en posantx=tant(en fonction dem2R).

3 Pour aller plus loin

Exercice 11Équations de Bernoulli et Riccatti1.Équation de Bernoulli (a)

Montrer que l"équation de Bernoulli

y

0+a(x)y+b(x)yn=0n2Zn6=0;n6=1

se ramène à une équation linéaire par le changement de fonctionz(x) =1=y(x)n1. (b) T rouverles solutions de l"équation xy0+yxy3=0.

2.Équation de Riccati

(a) Montrer que si y0est une solution particulière de l"équation de Riccati y

0+a(x)y+b(x)y2=c(x)

alors la fonction définie paru(x) =y(x)y0(x)vérifie une équation de Bernoulli (avecn=2). (b) Résoudre x2(y0+y2) =xy1 en vérifiant d"abord quey0(x) =1x est une solution. 1. Montrer que toute solution sur Rdey0+ex2y=0 tend vers 0 en+¥. 2.

Montrer que toute solution sur Rdey00+ex2y=0 est bornée. (Indication :étudier la fonction auxiliaire

u(x) =y(x)2+ex2y0(x)2.) 1.

Résoudre sur ]0;+¥[l"équation différentiellex2y00+y=0 (utiliser le changement de variablex=et).

2. T rouvertoutes les fonctions de classe C1surRvérifiant

8x6=0;f0(x) =f1x

Indication pourl"exer cice2 NUne telle fonctionfest solution d"une équation différentielley0+y=c.Indication pourl"exer cice3 N1.xest solution particulière

2. cos est solution particulière Indication pourl"exer cice4 NSolution particulière : 1.12x 2. xk+1k+1exp(x) 3. lnx1+ln2(x)Indication pourl"exer cice5 N1. C"est une équation à variables séparées.

Indication pour

l"exer cice

6 N1.une infinité de solutions

2. une solution Indication pourl"exer cice8 NPour la fin: principe de superposition.

Indication pour

l"exer cice

9 NUtiliser la méthode de variation de la constante.

Indication pour

l"exer cice

11 N1.(a) Se ramener à

11nz0+a(x)z+b(x) =0.

(b)y=1plx2+2xouy=0. 2. (a)

Remplacer yparu+y0.

(b)y=1x +1xlnjxj+lxouy=1x .4

Correction del"exer cice1 N1.Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Oncommenceparrésoudrel"équationhomogèneassociéey0+2y=0: lessolutionssontlesy(x)=le2x, l2R.

Il suffit ensuite de trouver une solution particulière de(E1). Le second membre étant polynomial de degré

2, on cherche une solution particulière de la même forme:

y

0(x) =ax2+bx+cest solution de(E1)

() 8x2R;y00(x)+2y0(x) =x2 () 8x2R;2ax2+(2a+2b)x+b+2c=x2 Ainsi, en identifiant les coefficients, on voit quey0(x) =12 x212 x+14 convient.

Les solutions de(E1)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =12 x212 x+14 +le2x(x2R) oùlest un paramètre réel. 2.

Il s"agit d"une équation dif férentiellelinéaire d"ordre 1, à coef ficientsconstants, a vecsecond membre.

Les solutions de l"équation homogène associéey0+y=0 sont lesy(x) =lex,l2R.

Il suffit ensuite de trouver une solution particulière de(E2). Le second membre est cette fois une fonction

trigonométrique, on cherche une solution particulière sous la forme d"une combinaison linéaire de cos et

sin: y

0(x) =acosx+bsinxest solution de(E2)

() 8x2R;y00(x)+y0(x) =2sinx () 8x2R;(a+b)cosx+(a+b)sinx=2sinx Ainsi, en identifiant les coefficients, on voit quey0(x) =cosx+sinxconvient.

Les solutions de(E2)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =cosx+sinx+lex(x2R) oùlest un paramètre réel. 3.

Les solutions de l"équation homogène associée y0y=0 sont lesy(x)=lex,l2R. On remarque que le

second membre est le produit d"une fonction exponentielle par une fonction polynomiale de degréd=1:

or la fonction exponentielle du second membre est la même (ex) que celle qui apparaît dans les solutions

de l"équation homogène. On cherche donc une solution particulière sous la forme d"un produit deexpar

une fonction polynomiale de degréd+1=2: y

0(x) = (ax2+bx+c)exest solution de(E3)

() 8x2R;y00(x)y0(x) = (x+1)ex () 8x2R;(2ax+b)ex= (x+1)ex Ainsi, en identifiant les coefficients, on voit quey0(x) = (12 x2+x)exconvient.

Les solutions de(E3)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) = (12 x2+x+l)ex(x2R) oùlest un paramètre réel. 5

4.Les solutions de l"équation homogène associée y0+y=0 sont lesy(x) =lex,l2R. On remarque que

le second membre est la somme d"une fonction polynomiale de degré 1, d"une fonction exponentielle

(différente deex) et d"une fonction trigonométrique. D"après le principe de superposition, on cherche

donc une solution particulière sous la forme d"une telle somme: y

0(x) =ax+b+mex+acosx+bsinxest solution de(E4)

() 8x2R;y00(x)+y0(x) =xex+cosx () 8x2R;ax+a+b+2mex+(a+b)cosx+(a+b)sinx=xex+cosx Ainsi, en identifiant les coefficients, on voit que y

0(x) =x112

ex+12 cosx+12 sinx convient.

Les solutions de(E4)sont obtenues en faisant la somme de cette solution particulière et des solutions de

l"équation homogène: y(x) =x112 ex+12 cosx+12 sinx+lex(x2R)

oùlest un paramètre réel.Correction del"exer cice2 NUne fonctionf:[0;1]!Rconvient si et seulement si

•fest dérivable •fest solution dey0+y=c •fvérifief(0)+f(1) =c(oùcest un réel quelconque)

Or les solutions de l"équation différentielley0+y=csont exactement lesf:x7!lex+c, oùl2R(en effet,

on voit facilement que la fonction constante égale àcest une solution particulière dey0+y=c). Évidemment

ces fonctions sont dérivables, etf(0)+f(1) =l(1+e1)+2c, donc la troisième condition est satisfaite si et

seulement sil(1+e1) =c. Ainsi les solutions du problème sont exactement les f(x) =l(ex1e1)

pourl2R.Correction del"exer cice3 N1.Comme le coef ficientde y0ne s"annule pas, on peut réécrire l"équation sous la forme

quotesdbs_dbs4.pdfusesText_8
[PDF] cours sur les racines carrées

[PDF] effet médiateur définition

[PDF] analyse de médiation statistique

[PDF] modérateur médiateur définition

[PDF] test de sobel médiation

[PDF] variable modératrice spss

[PDF] analyse de modération

[PDF] les verbes passe partout exercices corrigés

[PDF] synonyme des verbes passe partout

[PDF] remplacer il y a dans une description

[PDF] les procédés de traduction français arabe pdf

[PDF] quelles sont les différences entre html et xhtml ?

[PDF] sujet pour groupe whatsapp

[PDF] combinaison avec répétition démonstration

[PDF] les fenetres baudelaire pdf