[PDF] [PDF] Fonctions usuelles - Exo7 - Cours de mathématiques





Previous PDF Next PDF



[PDF] Chapitre13 : Fonctions hyperboliques - Melusine

I Les fonctions hyperboliques directes A) Définition Définition : Pour tout x P R on pose : B) Étude de la fonction sh (sinus hyperbolique)



[PDF] Fonctions trigonométriques et fonctions hyperboliques

Par analogie avec les fonctions trigonométriques on définit la tangente hyperbolique de x par tanh x = sinh x coshx = ex ? e?x ex + e?x et la cotangente 



[PDF] FORMULAIRE SUR LES FONCTIONS HYPERBOLIQUES

Responsable : Alessandra Frabetti Printemps 2010 http ://math univ-lyon1 fr/?frabetti/TMB/ FORMULAIRE SUR LES FONCTIONS HYPERBOLIQUES 1 Définitions :



[PDF] Les fonctions de référence

10 1 2 Définition des fonctions sinus hyperbolique et cosinus hyperbolique il faut lire différemment le cercle trigonométrique : penchez la tête



[PDF] Ch 4 FONCTIONS HYPERBOLIQUESpdf

FONCTIONS HYPERBOLIQUES 4 A Fonctions exponentielle puissance et logarithme 1 La fonction exponentielle de base a (



[PDF] 2 Les fonctions hyperboliques - La physique à Mérici

On définit les fonctions cosinus hyperbolique et sinus hyperbolique ainsi Par similarité avec les fonctions trigonométriques on définit aussi les 



[PDF] Petit formulaire bien utile Formules trigonométriques

Dérivées - Primitives Les fonctions sinus hyperbolique cosinus hyperbolique et tangente hyperbolique sont dérivables sur R sh ? (x) = chx ch ? ( 



[PDF] Fonctions usuelles - Exo7 - Cours de mathématiques

partie 3 Fonctions hyperboliques et hyperboliques inverses s'appellent des fonctions trigonométriques circulaires alors que ch et sh sont des fonc-



[PDF] Analyse - Université du Maine

7 6 Fonctions hyperboliques et leurs réciproques 10 4 1 Application aux fonctions trigonométriques réciproques 70



[PDF] Chapitre13 : Fonctions hyperboliques - Melusine

Moyen mnémotechnique à partir des formules de la trigonométrie circulaire : les signes qui précèdent un sinus carré ou un produit de deux sinus ou une tangente 



[PDF] Fonctions trigonométriques et hyperboliques réciproques

Pr Meryam BENABDOUALLAH Fonctions trigonométriques et hyperboliques réciproques I Quelques formules de trigonométrie 1 Identité remarquable



[PDF] FORMULAIRE SUR LES FONCTIONS HYPERBOLIQUES

FORMULAIRE SUR LES FONCTIONS HYPERBOLIQUES 1 Définitions : Expression de shx et thx en fonction de chx et de chx et coth x en fonction de shx :



[PDF] Ch 4 FONCTIONS HYPERBOLIQUESpdf

N°1 : Étudier le passage de la trigonométrie circulaire à la trigonométrie hyperbolique N°2 : Étudier les fonctions : ( ) ( ) ( ) 1



[PDF] Les fonctions de référence

10 1 2 Définition des fonctions sinus hyperbolique et cosinus hyperbolique 10 1 4 Formulaire de trigonométrie hyperbolique



[PDF] 9 fonctions hyperboliques

RECIPROQUES FONCTIONS HYPERBOLIQUES Définition On appelle fonction sinus hyperbolique cosinus hyperbolique tangente hyperbolique et cotangente



[PDF] trigonométrie hyperbolique

Fonctions trigonométriques hyperboliques Déf: On appelle cosinus hyperbolique sinus hyperbolique et tangente hyperbolique les fonctions de FR dans R 



[PDF] Petit formulaire bien utile Formules trigonométriques

Dérivées - Primitives Les fonctions sinus hyperbolique cosinus hyperbolique et tangente hyperbolique sont dérivables sur R sh ? (x) = chx ch ? ( 



[PDF] Fonctions circulaires et hyperboliques inverses - Exo7

Pour changer on va plutôt utiliser les expressions explicites des fonctions hyperboliques réciproques Supposons x ? 1 pour que argchx soit bien défini 

:

Fonctions usuellesExo7

ter à notre catalogue de nouvelles fonctions : ch,sh,th,arccos,arcsin,arctan,argch,argsh,argth.

Ces fonctions apparaissent naturellement dans la résolution de problèmes simples, en particulier

issus de la physique. Par exemple lorsqu"un fil est suspendu entre deux poteaux (ou un collier tenu

entre deux mains) alors la courbe dessinée est unechaînettedont l"équation fait intervenir le

cosinus hyperbolique et un paramètrea(qui dépend de la longueur du fil et de l"écartement des

poteaux) : yAEach³xa

´1.Logarithme et exponentielle

1.1.

Logarithme Proposition 1

Il existe une unique fonction, notée ln:]0,Å1[!Rtelle que : ln

0(x)AE1x

(pour toutxÈ0) et ln(1)AE0. De plus cette fonction vérifie (pour touta,bÈ0) : 1. ln( a£b)AElnaÅlnb, 2. ln( 1a )AE¡lna, 3. ln( an)AEnlna, (pour toutn2N) 4. ln est une fonction continue, strictement croissante et définit une bijection de ]0,Å1[ surR,1 2 5. lim x!0ln(1Åx)x AE1, 6. la fonction ln est conca veet ln xÉx¡1 (pour toutxÈ0).xy lnxe1 10

Remarque

lnxs"appelle lelogarithme naturelou aussilogarithme néperien. Il est caractérisé par ln(e)AE1. On définit lelogarithme en baseapar log a(x)AEln(x)ln(a)

De sorte que log

a(a)AE1. PouraAE10 on obtient lelogarithme décimallog10qui vérifielog10(10)AE1 (et donc log10(10n)AEn). Dans la pratique on utilise l"équivalence :xAE10y()yAElog10(x)En informatique intervient aussi le logarithme en base 2 : log2(2n)AEn.Démonstration L"existence et l"unicité viennent de la théorie de l"intégrale : ln(x)AERx 11t dt. Passons aux propriétés. 1. Posonsf(x)AEln(xy)¡ln(x) oùyÈ0 est fixé. Alorsf0(x)AEyln0(xy)¡ln0(x)AEyxy

¡1x

AE0. Donc

x7!f(x) a une dérivée nulle, donc est constante et vautf(1)AEln(y)¡ln(1)AEln(y). Doncln(xy)¡

ln(x)AEln(y). 2.

D"une part ln( a£1a

)AElnaÅln1a , mais d"autre part ln(a£1a )AEln(1)AE0. Donc lnaÅln1a AE0. 3.

Similaire ou récurrence .

4. ln est dérivable donc continue,ln0(x)AE1x È0 donc la fonction est strictement croissante. Comme ln(2)Èln(1)AE0 alorsln(2n)AEnln(2)!Å1(lorsquen!Å1). Donclimx!Å1lnxAEÅ1. DelnxAE

¡ln1x

on déduitlimx!0lnxAE ¡1. Par le théorème sur les fonctions continues et strictement croissantes, ln:]0,Å1[!Rest une bijection. 5. lim x!0ln(1Åx)x est la dérivée de ln au pointx0AE1, donc cette limite existe et vaut ln0(1)AE1. 6. ln 0 (x)AE1xest décroissante, donc la fonctionlnest concave. Posonsf(x)AEx¡1¡lnx;f0(x)AE1¡1x.

Par une étude de fonctionfatteint son maximum enx0AE1. Doncf(x)Êf(1)AE0. DonclnxÉx¡1.1.2.Exponentielle

3

Définition 1La bijection réciproque deln:]0,Å1[!Rs"appelle la fonctionexponentielle, notéeexp:R!

]0,Å1[.xyexpxe 1 10

Pourx2Ron note aussiexpour expx.Proposition 2

La fonction exponentielle vérifie les propriétés suivantes : exp(lnx)AExpour toutxÈ0et ln(expx)AExpour toutx2R-exp(aÅb)AEexp(a)£exp(b) -exp(nx)AE(expx)n -exp :R!]0,Å1[ est une fonction continue,strictement croissante vérifiantlimx!¡1expxAE

0 et lim

x!Å1expAEÅ1. La fonction exponentielle est dérivable etexp0xAEexpx, pour toutx2R. Elle est convexe et expxÊ1ÅxRemarque La fonction exponentielle est l"unique fonction qui vérifieexp0(x)AEexp(x) (pour toutx2R) et exp(1)AEe. Oùe'2,718...est le nombre qui vérifie lneAE1.Démonstration Ce sont les propriétés du logarithme retranscrites pour sa bijection réciproque.

Par exemple pour la dérivée : on part de l"égalitéln(expx)AExque l"on dérive. Cela donneexp0(x)£

ln

0(expx)AE1 donc exp0(x)£1expxAE1 et ainsi exp0(x)AEexpx.1.3.Puissance et comparaison

Par définition, pouraÈ0 etb2R,

a bAEexp¡blna¢ 4

Remarque

paAEa12

AEexp¡12

lna¢ npaAEa1n

AEexp¡1n

lna¢(laracinen-ièmedea) -On note aussi expxparexce qui se justifie par le calcul :exAEexp¡xlne¢AEexp(x). -Les fonctionsx7!axs"appellent aussi des fonctions exponentielles et se ramènent sys- tématiquement à la fonction exponentielle classique par l"égalitéaxAEexp(xlna). Il ne

faut surtout pas les confondre avec les fonctions puissancesx7!xa.Comparons les fonctions lnx, expxavecx:Proposition 3

lim x!Å1lnxx

AE0 et limx!Å1expxx

AEÅ1.xyx

a(aÈ1)x a(aÇ1)expxlnxx 1 10

Démonstration

1. On a vu ln xÉx¡1 (pour toutxÈ0). Donc lnxÉxdonclnpxpx

É1. Cela donne

0Élnxx

AEln³px

2´x

AE2lnpx

x

AE2lnpxpx

1px

É2px

Cette double inégalité entraîne lim

x!Å1lnxx AE0. 2. On a vu exp xÊ1Åx(pour toutx2R). Donc expx!Å1(lorsquex!Å1). xexpxAEln(expx)expxAElnuu lorsquex! Å1alorsuAEexpx! Å1et donc par le premier pointlnuu !0. Doncxexpx!0 et reste positive, ainsi limx!Å1expxx

AEÅ1.

5

Mini-exercices

1. Montrer que ln(1 Åex)AExÅln(1Åe¡x), pour toutx2R.

2.Étudier la fonctionf(x)AEln(x2Å1)¡ln(x)¡1. Tracer son graphe. Résoudre l"équation

(f(x)AE0). Idem avecg(x)AE1Ålnxx . Idem avech(x)AExx. 3.

Expliquer comment log

10permet de calculer le nombre de chiffres d"un entiern.

4.

Montrerln(1Åx)Êx¡x22pourxÊ0 (faire une étude de fonction). Idem avecexÊ1ÅxÅx22

pour toutxÊ0. 5. Calculer la limite de la suite définie parunAE¡1Å1n nlorsquen! Å1. Idem avec vnAE¡1n netwnAEn1n .2.F onctionscirculaires inverses 2.1.

Arccosinus

Considérons la fonction cosinuscos:R![¡1,1],x7!cosx. Pour obtenir une bijection à partir de

cette fonction, il faut considérer la restriction de cosinus à l"intervalle [0,¼]. Sur cet intervalle la

fonction cosinus est continue et strictement décroissante, donc la restriction cos j:[0,¼]![¡1,1] est une bijection. Sa bijection réciproque est la fonctionarccosinus: arccos:[¡1,1]![0,¼]xy cosx0¼¼2¡¼¡

¼2Å1¡1xy

arccosx01¡1¼ ¼2 On a donc, par définition de la bijection réciproque : cos

¡arccos(x)¢AEx8x2[¡1,1]

arccos¡cos(x)¢AEx8x2[0,¼]Autrement dit : Six2[0,¼] cos(x)AEy()xAEarccosyTerminons avec la dérivée de arccos : arccos

0(x)AE¡1p1¡x28x2]¡1,1[

6

Démonstration

On démarre de l"égalité cos(arccosx)AExque l"on dérive : cos(arccosx)AEx

AE) ¡arccos0(x)£sin(arccosx)AE1

AE)arccos0(x)AE¡1sin(arccosx)

yAEarccosxon obtientcos2(arccosx)Åsin2(arccosx)AE1 doncx2Åsin2(arccosx)AE1. On en déduit : sin(arccosx)AEÅp1¡x2(avec le signeÅcar arccosx2[0,¼]).2.2.Arcsinus

La restriction

sin j:[¡¼2 ,ż2 ]![¡1,1] est une bijection. Sa bijection réciproque est la fonctionarcsinus: arcsin:[¡1,1]![¡¼2 ,ż2 ]xysinx0¼¼2¡¼¡

¼2Å1¡1xy

arcsinx01¡1¼2 ¼2 sin

¡arcsin(x)¢AEx8x2[¡1,1]

arcsin¡sin(x)¢AEx8x2[¡¼2 ,ż2 ]Six2[¡¼2 ,ż2 ] sin(x)AEy()xAEarcsinyarcsin

La restriction

tan j:]¡¼2 ,ż2 [!R 7 est une bijection. Sa bijection réciproque est la fonctionarctangente: arctan:R!]¡¼2 ,ż2 [xytanx¼2¡

¼23¼2¼¡¼xy

arctanx0¼2 ¼2 tan

¡arctan(x)¢AEx8x2R

quotesdbs_dbs41.pdfusesText_41
[PDF] en 1974 un message radio a été envoyé depuis le radiotélescope

[PDF] saturne jumelles

[PDF] jumelles astronomie

[PDF] observer le ciel avec des jumelles

[PDF] jumelles 10x50

[PDF] galaxie visible jumelle

[PDF] ciel d'hiver peinture

[PDF] taux de pression lycée professionnel

[PDF] saio toulouse affelnet

[PDF] ensma

[PDF] ens ulm

[PDF] exo 7

[PDF] apprendre le néerlandais débutant

[PDF] le néerlandais pour les nuls

[PDF] apprendre néerlandais audio