[PDF] NOMBRES COMPLEXES





Previous PDF Next PDF



Forme trigonométrique dun nombre complexe – Applications

Forme exponentielle. 11. Retrouver le module et l'argument. 12. Produits et quotients. 13. Retrouver les formules de trigonométrie.



NOMBRES COMPLEXES (Partie 2)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 1. NOMBRES COMPLEXES. (Partie 2) I. Module et argument d'un nombre complexe. 1) Module.



Chapitre 1 - Trigonométrie et nombres complexes

2 sept. 2015 2 [?]. II/ Formules de base. La formule fondamentale à retenir est la suivante : cos(?) ...



NOMBRES COMPLEXES (Partie 1)

Vocabulaire : - L'écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z. Page 2. Yvan Monka – Académie de Strasbourg – www.maths-et-tiques 



NOMBRES COMPLEXES

Nombres complexes - 6e (6h). 2. Dans certains cas la méthode de CARDANO se révèle infructueuse. Ainsi



NOMBRES COMPLEXES (Partie 3)

Yvan Monka – Académie de Strasbourg – www.maths-et-tiques.fr. 2. Méthode : Calculer des valeurs de cos et sin à l'aide des formules d'addition.



Formulaire sur les complexes

22 janv. 2014 Le conjugué d'un nombre complexe z est noté z = a ? ib. Pour tout z complexe



Chapitre 2 - Fonctions dune variable complexe

On peut définir un point z du plan complexe C par la donnée de deux On suppose connue la formule du rotationnel (formule de Green-Riemann) pour.



Math 256-Séries de Fourier

Dans ce cas la série complexe correspond `a la série réelle ?n?0(an cos(nx) + bn sin(nx))



NOMBRES COMPLEXES

= e i n ?. n ? ZZ est appelée formule de MOIVRE. Exercice 12. On considère les nombres complexes : z1 = e i ?.



[PDF] NOMBRES COMPLEXES

CI est muni d'une addition et d'une multiplication qui suivent les mêmes règles de calcul que celles connues dans Un nombre complexe sera souvent représenté 



[PDF] NOMBRES COMPLEXES

CARDANO publie la formule dans l'Ars Magna en 1545 provoquant la rancune de TARTAGLIA pour de longues années Voici la formule connue depuis lors sous le nom 



[PDF] NOMBRES COMPLEXES (Partie 1) - maths et tiques

Exemples : 3+ 4i ; ?2 ? i ; i 3 sont des nombres complexes Vocabulaire : - L'écriture a + ib d'un nombre complexe z est appelée la forme algébrique de z



[PDF] Nombres complexes - Exo7 - Cours de mathématiques

Ces formules s'obtiennent facilement en utilisant la définition de la notation exponentielle Nous les appliquons dans la suite à deux problèmes : le 



[PDF] Formulaire sur les complexes - Lycée dAdultes

22 jan 2014 · Formulaire sur les complexes 1 Définition La forme algébrique d'un nombre com- plexe z est de la forme : z = a + ib avec (a; b) ? R2



[PDF] NOMBRES COMPLEXES - AlloSchool

2ème BAC Sciences maths I) L'ENSEMBLE DES NOMBRES COMPLEXES s'appelles des nombres complexes qui vérifie : formule de binôme



[PDF] Cours complet sur les nombres complexes - TS - Bacamaths

Au début du XVIème siècle le mathématicien Scipione dal Ferro propose une formule donnant une solution de l'équation du 3ème degré x3 + px = q :



[PDF] Fiche 6 : Nombres complexes - Studyrama

I - Ensemble des nombres complexes II - Nombre complexe conjugué III - Module et argument IV - Les différentes écritures d'un nombre complexe non nul



[PDF] 1 Corps des nombres complexes

Pour tout ? ?/ réels on peut alors vérifier la formule magique : ei(?+? ) = ei?ei? Définition 1 2 2 Soit z un complexe non nul le complexe z z est de 



[PDF] Feuille 2 Nombres complexes

Exercice 4 1 Déterminer la forme trigonométrique de (1 + ) pour tout ? ? (Utiliser la formule de Moivre) 

  • Comment calculer complexe ?

    Rappelons qu'un nombre complexe �� = �� + �� �� est constitué de deux parties, une partie réelle ( ( �� ) = �� ) R e et une partie imaginaire ( ( �� ) = �� ) I m .
  • Comment résoudre l'équation d'un nombre complexe ?

    Solutions complexes d'une équation de degré 2 - cours

    1az²+ bz + c = 0 avec a?0.2On calcule le DISCRIMINANT b²-4ac, noté souvent ?, puis il suffit de regarder le signe de ? et de connaître le tableau suivant pour pouvoir conclure.3Note: ? est un réel car a, b et c sont réels.
  • Quelle est la formule mathématique la plus complexe ?

    Appellé «le dernier théorème de Fermat», cette équation avait été posé en 1637 par le mathématicien fran?is Pierre Fermat. Il l'avait formulée ainsi : «il n'existe pas de nombres entiers non nuls x, y et z tels que : xn + yn = zn, dès que n est un entier strictement supérieur à 2».
  • La définition du conjugué de �� = �� + �� �� est �� = �� ? �� �� . Si �� est un nombre réel pur, on sait que �� = 0 . Ainsi, on conclut que si �� est un nombre réel, �� = �� .

Ch4 : Nombres complexes (TS)

- 1/18 -

NOMBRES COMPLEXES

I. INTRODUCTION ET DEFINITION

Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et -3 et 2 a pour racine2 et -2.

Par contre, aucun réel négatif n"a de racine (réelle). C"est pour pallier à cette discrimination que furent créer les nombres complexes.

Le nombre i :

On appelle

i un nombre dont le carré est -1. On décrète que i est la racine de -1. Ainsi : i2 = -1

De plus, son opposé -

i a aussi pour carré -1. En effet : (-i)2 = [(-1) × i]2 = (-1)2 × i2 = -1 Conclusion : Les deux racines de -1 sont deux nombres irréels i et -i.

Le nombre

i est appelé nombre imaginaire. L forme factorisée de x2 + 1 est (x + i) . (x - i)

Un peu d"histoire : le nombre i a longtemps été noté -1 pour la raison évidente que i a pour carré -1.

La notation i fut introduite par Euler en 1777, puis reprise par Gauss au début du XIXème siècle. Cependant le premier

à parler de nombre imaginaire fut le très cartésien Descartes en 1637.

Remarques

· IN est l"ensemble des entiers naturels. C"est l"ensemble des entiers positifs ou nuls. Dans IN l"équation x + 1 = 0 n"a pas de solution. Cette équation a une solution notée -1 , élément de l"ensemble ZZ .

· ZZ est l"ensemble des entiers relatifs. C"est l"ensemble des entiers positifs, négatifs ou nuls.

IN est contenu dans ZZ , ce que l"on note IN Ì ZZ . Dans ZZ l"équation 2x = 1 n"a pas de solution.

Cette équation a une solution notée

1 2 , élément de l"ensemble QI .

· QI est l"ensemble des nombres rationnels

C"est l"ensemble de tous les nombres de la forme

p q avec p Î ZZ et q Î ZZ * . QI contient ZZ . On a donc IN Ì ZZ Ì QI .

Dans QI l"équation x

2 = 2 n"a pas de solutions.

Cette équation a deux solutions notées

2 et -2 , éléments de l"ensemble IR.

· IR est l"ensemble des nombres réels. C"est l"ensemble des abscisses de tous les points d"une droite.

IR contient QI . On a donc IN Ì ZZ Ì QI Ì IR .

Dans IR l"équation x

2 = -1 n"a pas de solutions.

Cette équation a deux solutions notées i et -i , solutions de l"ensemble CI .

· CI est l"ensemble des nombres complexes.

C"est l"ensemble des nombres de la forme a + ib avec a Î IR et b Î IR. CI contient IR . On a donc IN Ì ZZ Ì QI Ì IR Ì CI .

Ch4 : Nombres complexes (TS)

- 2/18 -

Définition

On appelle corps des nombres complexes, et on note CI un ensemble contenant IR tel que : · Il existe dans CI un élément noté i tel que i 2 = -1. · Tout élément de CI s"écrit sous la forme a + ib , où a et b sont des réels.

· CI est muni d"une addition et d"une multiplication qui suivent les mêmes règles de calcul que celles

connues dans ô Un nombre complexe sera souvent représenté par la lettre z.

Nombres complexes particuliers

Soit un nombre complexe z = a + ib avec a Î IR et b Î IR . · si b = 0 , on a z = a , z est un réel.

· si a = 0 , on a z = ib , on dit que z est un imaginaire pur (on dit parfois simplement imaginaire).

Remarques

· IR correspond à l"ensemble des points sur une droite. Un nombre réel x correspond au point d"abscisse x sur la droite. On peut donc toujours comparer deux nombres réels.

· CI , ensemble des nombres a + ib avec a Î IR et b Î IR correspond à l"ensemble des points d"un plan.

Un nombre complexe a + ib avec a Î IR et b Î IR correspond au point du plan de coordonnées (a ; b).

On ne peut donc pas comparer deux nombres complexes : il n"y a pas de relation d"ordre dans CI .

On ne peut donc pas dire qu"un nombre complexe z est inférieur à un nombre complexe z" ou qu"un

nombre complexe z est positif (c"est-à-dire supérieur à 0).

Définition :

Soit un nombre complexe z .

L"écriture z = a + ib , où a et b sont des réels, est appelée forme algébrique du nombre complexe z.

a est appelé partie réelle de z, et b partie imaginaire de z : on note a = Re(z) et b = Im(z).

Remarque

· La partie réelle de z et la partie imaginaire de z sont des nombres réels.

Propriété :

Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire.

C"est-à-dire que si a, b, a", b" sont des réels, on a a + ib = a" + ib" Û (a ; b) = (a" ; b") Û ??? a = a"b = b"

Exercice 01

Soit z = 2 + 3i ; z" = i - 5.

Calculer et écrire sous la forme algébrique z + z" ; z - z" ; 2z - 3z" ; zz" ; z

2 z + z" = 2 + 3i + i - 5 = -3 + 4i z - z" = 2 + 3i - (i - 5) = 2 + 3i - i + 5 = 7 + 2i

2z - 3z" = 2(2 + 3i) - 3(i - 5) = 4 + 6i - 3i + 15 = 19 + 3i

zz" = (2 + 3i)(i - 5) = 2i - 10 + 3i

2 - 15i = 2i - 10 - 3 - 15i = - 13 - 13i

z

2 = (2 + 3i)2 = 22 + 2 x 2 x 3i + (3i)2 = 4 + 12i + 9i2 = 4 + 12i - 9 = -5 + 12i

Exercice 02

1°) Calculer (3 + 2i)(3 - 2i). En déduire la forme algébrique de 1

3 + 2i

(utiliser l"expression conjuguée).

2°) Déterminer la forme algébrique des nombres complexes : 1

1 + i ; 1

3 - i ; 1

i

1°) (3 + 2i)(3 - 2i) = (3)

2 - -(2i)2 = 9 - (-4) = 9 + 4 = 13

Ch4 : Nombres complexes (TS)

- 3/18 -

La forme algébrique de 1

3 + 2i est 3

13 - 2

13 i

2°) La forme algébrique de

1 1 + i est 1 2 - 1 2 i

La forme algébrique de

1 3 - i est 3

10 + 1

10 i

La forme algébrique de

1 i est - i

II. REPRESENTATION GRAPHIQUE

Un nombre complexe est formé de deux nombres réels. Or deux nombres réels forment un couple de

coordonnées. Ainsi, si le plan est muni d"un repère orthonormé on peut repérer tout point par un nombre

complexe. a) Affixe

Définition :

On se place dans le plan rapporté à un repère orthonormal direct (O;®u,®v) . ■ Au point M de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a +i b est l"affixe de M

■ Au vecteur ¾®V de coordonnées (a ; b) , on peut associer le nombre complexe z = a + ib.

On dit que z = a + ib est l"affixe de ¾®V

■ Lorsqu"on repère un point ou un vecteur par son affixe dans un repère orthonormal direct, on dit qu"on se

place dans le plan complexe.

Exercice 03

Placer dans le plan complexe, les points d"affixes : z

1 = 2 + 3i ; z2 = 3 + i ; z3 = -1 + 2i ; z4 = 2 - i ; z5 = i

z

6 = -i ; z7 = 1 ; z8 = -i - 3 ; z9 = 2z1 - 3z2 ; z10 = z3(z4 - z2)

Propriétés

Si M a pour affixe z = a + ib et si M" a pour affixe z" = a" + ib" , avec a, b, a", b" réels, alors

· le vecteur ¾®MM" a pour affixe z" - z = (a" - a) + (b" - b)i

· OM = ||¾®OM|| = a2 + b2

· MM" = ||¾®MM"|| = (a" - a)2 + (b" - b)2 · le milieu I de [MM"] a pour affixe zI = z + z" 2 Si

¾®V a pour affixe z et

¾®V " pour affixe z", alors

¾®V +

¾®V " a pour affixe z + z".

Si k est un réel, alors k¾®V a pour affixe k z. b) Conjugué

Définition

Soit z un nombre complexe de forme algébrique a + ib. On appelle conjugué de z le nombre complexe noté -z tel que -z = a - ib.

Remarque

Si M est le point d"affixe z, le point M" d"affixe ¾z est symétrique de M par rapport à l"axe des abscisses.

Ch4 : Nombres complexes (TS)

- 4/18 -

Exercice 04

Étant donné un point M d"affixe z = a + ib , avec a et b réels. Placer ···· le point M" d"affixe z" = a - ib , ···· le point M" d"affixe z" = -a + ib , ···· le point M"" d"affixe z"" = -a - ib = - z .

Exercice 05

Soit z = 3 + 5i et z" = -2 + 3i.

Calculer

¾¾¾¾z ; ¾¾¾¾z" ; ¾¾¾¾z + ¾¾¾¾z" ; z + z" ; z + z" ; ¾¾¾¾z.¾¾¾¾z" ; zz" ; zz" .

-z = 3 - 5i -z" = -2 - 3i -z + -z" = 3 - 5i - 2 - 3i = 1 - 8i z + z" = 3 + 5i - 2 + 3i = 1 + 8i z + z" = 1 + 8i = 1 - 8i ¾z.¾z" = (3 - 5i)(-2 - 3i) = -6 - 9i + 10i +15i2 = -6 + i - 15 = -21 + i zz" = (3 + 5i)(-2 + 3i) = -6 + 9i - 10i +15i

2 = -6 - i - 15 = -21 - i

zz" = -21 - i = -21 + i

Propriétés

Pour tous nombres complexes z et z", on a :

· ¾z = z

· z.¾z est un réel positif

· z + z" = ¾z + ¾z" ; z - z" = ¾z - ¾z" ; zz" = ¾z.¾z"

· Si z" ¹ 0 (())

1 z" = 1 z" ; (()) z z" = ¾z z"

· Re(z) = z +

¾z

2 ; Im(z) = z -

¾z 2i · z est réel Û z = ¾z ; z est imaginaire pur Û z = - ¾z

Démonstrations :

Soient les nombres complexes écrits sous la forme algébrique : z = a + ibi et z" = a" + ib".

· -z = a - ib donc ¾z = a + ib = z

· z.

¾z = (a + ib)(a - ib) = a2 - (ib)2 = a2 - (-b2) = a2 + b2 donc z.¾z est un réel positif .

· z + z" = a + ib + a" + ib" = (a+a") + i(b+b") comme (a+a") et (b+b") sont des réels, on obtient z + z" = (a+a") - i(b+b") = a - ib + a" - ib" = ¾z + ¾z" · zz" = (a + ib)(a" + ib") = aa" + iab" + ia"b + bb"i

2 = (aa" - bb") + i(ab" + a"b)

comme (aa" - bb") et (ab" + a"b) sont des réels, on obtient zz" = (aa" - bb") - i(ab" + a"b).

D"autre part

¾z.¾z" = (a - ib)(a" - ib") = aa" - iab" - ia"b + bb"i 2 = (aa" - bb") - i(ab" + a"b) donc zz" = ¾z.¾z"

· Si z" # 0 1

z" = 1 a" + b"i = a" - b"i (a" + b"i)(a" - b"i) = a" - b"i a"2 + b"2 = a" a"2 + b"2 +i - b" a"2 + b"2 Comme a" a"

2 + b"2 et - b"

a"2 + b"2 sont des réels, on en déduit (()) 1 z" = a" a"2 + b"2 + ib" a"2 + b"2

D"autre part

¾z" = a" - ib", donc 1

¾z" = 1

a" - b"i = a" + b"i (a" - b"i)(a" + b"i) = a" + b"i a"2 + b"2 = a" a"

2 + b"2 + ib"

a"2 + b"2 Donc 1 z" = 1 z"

Ch4 : Nombres complexes (TS)

- 5/18 -

· Si z" # 0 (())

z z" = (())z x 1 z" = -z x (()) 1 z" (d"après la propriété sur le produit) -z x 1 z" (d"après la propriété précédente) ¾z z"

· z +

¾z

2 = a + bi + a - bi

2 = 2a

2 = a = Re(z) ; z -

¾z

2i = a + bi - (a - bi)

2i = 2bi

2i = b = Im(z)

· z =

¾z Û a + ib = a - ib Û a + ib - a + ib = 0 Û 2ib = 0 Û b = 0 Û Im(z) = 0 Û z réel

· z = -¾z Û a + ib = -a + ib Û 2a = 0 Û a = 0 Û Re(z) = 0 Û z imaginaire pur

Exercice 06

1°) Écrire sous la forme algébrique les nombres complexes suivants :

1

2 + 7i

; 43 - i ; 2 - i

5 + 3i ; i

1 - 3i ; 2 + i

i

2°) Écrire plus simplement le nombre complexe

7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i

1°)

1

2 + 7i

= 2 - 7i (2 + 7i)(2 - 7i) = 2 - 7i

22 - (7i)2 = 2 - 7i

4 + 49 = 2

53 - 7

53 i
4

3 - i = 4(3 + i)

3 - i)(3 + i) = 4(3 + i)

3 2 - i 2 = 4(3 + i)

3 + 1 = 4(3 + i)

4 = 3 + i

2 - i

5 + 3i

= (2 - i)(5 - 3i) (5 + 3i)(5 - 3i) = 10 - 6i - 5i + 3i 2

52 - (3i)2 = 10 - 11i - 3

25 + 9 = 7

34 - 11

34 i
i

1 - 3i

= i(1 + 3i) (1 - 3i)(1 + 3i) = i - 3i 2

12 - (3i)2 = i + 3

1 + 9 = 3

10 + 1

10 i 2 + i i = (2 + i)(i) i

2 = 2i - 1

-1 = 1 - 2i

2°) 7 + 5i

2

7 - 2i + 27 - 2i

7 + 5i = (7 + 5i)(27 + 2i)

(2

7 - 2i)(27 + 2i) + (27 - 2i)(7 - 5i)

7 + 5i)(7 - 5i)

= 14 + 2

7 i + 107 i - 10

28 + 4 + 14 - 107 i - 27 i - 10

7 + 25

= 4 + 12 7 i

32 + 4 - 127 i

32 = 8

32 = 1

4

III. FORME TRIGONOMETRIQUE

Rappel

Le plan étant rapporté à un repère orthonormal direct (O;®u,®v) , soit

M un point de coordonnées (a ; b) .

Si M ¹ O, on dit que (r ; q) est un couple de coordonnées polaires de

M lorsque : r = OM et q = (

®u ,

¾®OM) [2p]

On a alors r =

a2 + b2 ; a = r cos q et b = r sin q

Si z est l"affixe de M, z = a + ib = r

cos q + i r sin q = r (cos q + i sin q) a) Module

Définition

Tout nombre complexe non nul z peut-être écrit sous la forme :

z = r(cos q + i sin q) , avec q Î IR et r Î IR+* , qui est une forme trigonométrique de z.

M( z) r a b q O

Ch4 : Nombres complexes (TS)

- 6/18 -

Propriété

Si deux nombres complexes z et z" sont écrits sous forme trigonométrique : z = r(cos q + i sin q) et z" = r" (cos q" + i sin q"), on a : z = z" Û ??? r = r" q = q" [2]

Définition

Soit le nombre complexe z de forme algébrique a + ib et soit M le point d"affixe z. On appelle module de z le nombre réel positif r = OM = a2 + b2

On note r = | z |

Remarque

La notation | z | ne risque pas de prêter à confusion avec la notation de la valeur absolue puisque lorsque x

est un nombre réel, on a r = OM = | x | .

Pour un réel x, |

x | pourra être lu indifféremment "valeur absolue de x" ou "module de x".

Pour un nombre complexe non réel z , |

z | sera lu impérativement "module de z".

Exercice 07

1°) Calculer le module de chacun des nombres complexes :

z

1 = 3 + 4i z2 = 1 - i z3 = 5 - i

2 z4 = 3

z

5 = i - 4 z6 = i z7 = -5 z8 = 2

2 + 2 2 i

2°) Donner les formes trigonométriques de :

z

1 = 1 + i z2 = 3 + i z3 = 1 - i3 z4 = i

1°)

|z

1| = | 3 + 4i | = 32 + 42 = 9 + 16 = 25 = 5

|z

2| = | 1 - i | = 12 + (-1)2 = 1 + 1 = 2

|z

3| = 5 - 1

2 i = 52 + (())- 1

2

2 = 25 + 1

4 = 101

4 = 101

2 |z

5| = | i - 4 | = | -4 + 1i | = (-4)2 + 12 = 17

|z

6| = | i | = | 0 + 1i | = 02 + 12 = 1 = 1

|z

7| = | -5 | = 5 (-5 Î IR et la valeur absolue de -5 est 5)

|z

8| = 2

2 + 2

2 i = (())

2 2

2 + (())

2 2

2 = 2

4 + 2

4 = 1 = 1

2°) La forme trigonométrique de z est une écriture z = r(cos

q + i sin q) avec r = OM = | z | et q Î IR ■ z

1 = 1 + i on a alors r1 = | z1 | = OM1 = 12 + 12 = 2

On peut écrire z

1 = 2 (())

1

2 + 12 i = 2 (())

2 2 + 2

2 i = 2 (())cos p

4 + i sin p

4 ■ z

2 = 3 + i on a alors r2 = | z2 | = OM2 = 3

2 + 12 = 3 + 1 = 4 = 2

On peut donc écrire z

2 = 2 (())

3 2 + 1

2 i = 2 (())cos p

6 + i sin p

6 ■ z

3 = 1 - i3 on a alors r3 = | z3 | = OM3 = 12 + (-3 )2 = 1 + 3 = 4 = 2

On peut donc écrire z

3 = 2 ????

1

2 + i (())- 3

2 = 2 ????cos (())- p

3 + i sin (())- p 3 ■ z

4 = i on a alors r4 = | z4 | = OM4 = | i | = 1

On peut écrire z

4 = 1 (0 + 1 i) = 1 (())cos p

2 + i sin p

2

Ch4 : Nombres complexes (TS)

- 7/18 -

Propriété

Soit ¾®V un vecteur d"affixe z , on a ||¾®V|| = | z |. Soient A et B deux points d"affixes respectives zA et zB, on a \AB = | zB - zA |.

Exercice 08

Dans le plan complexe rapporté au repère orthonormal direct (O;®®®®u,®®®®v) , on considère les points A et B

d"affixes respectives a = 2 - 3i et b = 5 - i . Calculer les distances OA , OB et AB. En déduire la nature du triangle OAB. On a OA = | a | = | 2 - 3i | = 22 + (-3)2 = 13

OB = |

b | = | 5 - i | = 52 + (-1)2 = 26

AB = |

b - a | = | 5 - i - (2 - 3i) | = | 3 + 2i | = 32 + 22 = 13 On remarque que OA = AB, donc le triangle OAB est isocèle de sommet principal A.

De plus OA

2 + AB2 = OB2 , on en déduit que le triangle est rectangle en A.

Le triangle OAB est donc rectangle isocèle en A.quotesdbs_dbs41.pdfusesText_41
[PDF] formules nombres complexes terminale s

[PDF] formule complexe exponentielle

[PDF] formule complexe module

[PDF] liaison intermoléculaire et intramoléculaire

[PDF] interaction de van der waals liaison hydrogène

[PDF] interaction intermoléculaire 1ere s

[PDF] force de debye

[PDF] nombres complexes terminale s annales

[PDF] liaison intermoléculaire définition

[PDF] force dipole dipole

[PDF] interaction intermoléculaire definition

[PDF] force de debye exemple

[PDF] formule du champ magnétique

[PDF] exercice corrigé magnetisme

[PDF] induction magnétique formule