[PDF] Title: Yukawas short-range nuclear force vs. Debyes electrostatic





Previous PDF Next PDF



Forces intermoléculaires

Forces d'autant plus fortes que les moments dipolaires sont élevés. Interactions entre un dipôle permanent et un dipôle induit – forces de Debye.



Debye?Hückel Potential of Mean Force and Activity Coefficient for

Debye-Hiickel Potential of Mean Force and Activity Coefficient for Point Defects in Ionic Crystals. A. R. ALLNATT AND P. C. HOINES.



LES FORCES INTERMOLECULAIRES

2) Interactions dipôle permanent - dipôle induit : Forces de Debye. Ces interactions se produisent entre des molécules possédant un moment dipolaire 



Title: Yukawas short-range nuclear force vs. Debyes electrostatic

of simple-model short-range potentials to imitate the nuclear forces ? ? ?Y (Yukawa force) and ? ?S (Debye screening) under the same letter ? will be ...



Debye length

4 nov. 2019 2) at sufficiently high energy the space- charge forces become insignificant in comparison to the external forces acting on a beam. Debye length ...





Importance of Debye and Keesom Interactions in Separating m

forces. Physical and chemical parameters indicate that compared with p-xylene m-xylene has a greater Debye–Keesom interaction tendency with PEG molecules.



1.1. Lactivité des solutions électrochimiques. La loi de Debye

ions la plus connue étant la théorie de Debye-Hückel. Rappel : 2) Calculer la force ionique de l'eau de mer et comparez-là à celle de l'eau de source.



Adsorption of Polyelectrolyte Solutions on Surfaces: A Debye

1 janv. 1996 Debye-Hfickel length. At low salt concentration the profiles show damped oscillations. Similarly



X-ray Absorption Fine Structure Debye-Waller Factors.

j in XAFS Debye-Waller factors for a general scattering path j. Given a few local force constants the method yields 2 j via the projected densities.



[PDF] Forces intermoléculaires

Interactions entre un dipôle permanent et un dipôle induit – forces de Debye Une molécule polaire crée autour d'elle un champ électrique et si une molécule 



[PDF] Les transformations de la matière - Chimie en PCSI

En 1920 Debye a établi l'expression d'une nouvelle contribution qui s'ajoute à la précédente lorsqu'elle implique deux molécules polaires C'est l'interaction 



[PDF] LES FORCES INTERMOLECULAIRES

Les forces responsables de la cohésion des liquides et des solides sont des forces d'attraction intermoléculaires ces forces sont désignées sous le nom 



Les forces de Van der Waals et le Gecko - CultureSciences-Chimie

15 fév 2014 · La seconde contribution aux forces de Van der Waals est la force de Debye qui provient de l'interaction entre un dipôle permanent et un 



[PDF] Fiche-bilan Modèle de DEBYE-HÜCKEL - ENS Lyon

En 1923 DEBYE et HÜCKEL proposent une approche s'appuyant sur la description d'une atmosphère io- nique pour déterminer le cœfficient d'activité ?i dans l' 



[PDF] Forces intermoléculaires - AlloSchool

Les liaisons physiques résultent des forces intermoléculaires qui s'exercent entre molé- interaction de VAN DER WAALS de type DEBYE



[PDF] forces intermoléculaires et propriétés physiques - Chimie - PCSI

plus élevée traduit l'existence de forces intermoléculaires plus intenses à des forces de Keesom (et de Debye) ; sa température d'ébullition est donc 



Forces de Debye - Wikipédia

Les forces de Debye sont les forces intermoléculaires résultants de l'interaction entre un dipôle permanent et un dipôle induit Les forces de Debye font 



[PDF] ch ci4 : liaisons de van der waals et liaison hydrogene - solvants

2) Force de dispersion ou interaction de Debye Interaction dipôle permanent- dipôle induit : Les molécules polaires possèdent des dipôles permanents qui 



[PDF] Les interactions intermoléculaires

Interactions charge/dipôle induit et dipôle/dipôle induit (Debye) différents états de la matière relève de forces plus faibles qui ne

:
Title: Yukawa's short-range nuclear force vs. Debye's electrostatic screening Author: Mladen Georgiev (Institute of Solid State Physics, Bulgarian Academy of

Sciences, 1784 Sofia, Bulgaria)

Comments: 8 pdf pages with 1 table and 3 figures

Subj-class: physics

The eigenvalue problem of a short-range potential is revisited in view of the increased interest in a simple model imitating the nuclear forces. This is in order to perform calculations of vibronic energies in fermion-boson coupled systems.

1. Foreword

We have recently suggested that coupled fermion-boson systems may be akin to coupled electron-phonon systems in many respects including the behavior of their vibronic potentials as well as the possibility to give rise to symmetry breaking Jahn-Teller effects. In the pursuit of simple-model short-range potentials to imitate the nuclear forces, historically Yukawa's potential appeared the most promising one. A few attempts have been made in the past to deduce eigenstates and eigenvalues for the Yukawa potential, though most of them bear the character of approximations devoid of clear-cut conclusions. In what follows, we also present a state-of-the-art outlook of the formally related problem of Debye screening in electrostatics.

2. Intranuclear potential

Yukawa [1] introduced a phenomenological short-range intranuclear potential by analogy with Debye's screening electrostatic potential. In spherical symmetry:

V(r) = (1/r) exp(Y

r) (1)

Here Y = 510 12 cm 1 is a constant which has been deduced from the experimental data. It is not clear whether is an actual constant or is dependent on other parameters. The same potential is characteristic of Debye's screening only by substituting S for Y . To the contrary the respective electron screening constant S = (8ne2 /k B

T) depends on the temperature T

and the carrier concentration n. The status of is thus a point of distinction between Yukawa's and Debye's arguments virtually leading to the same math result. In the following Y (Yukawa force) and S (Debye screening) under the same letter will be implied if not mentioned otherwise.

3. Poisson-Boltzmann equation vs. Coulomb screening

The Yukawa potential [1] is akin to the screened Coulomb potential in electrostatics [2]. Both should be dealt with by similar methods. We remind that the latter appears as an approximate easy-to-tackle version at e " kB T (Debye-Hückel's (D-H) approximation) of the electrostatic potential in a Maxwell-Boltzmann (M-B) system [3]. In considering the quantum-mechanic behavior of M-B systems, the complete electrostatic functions at e ~ k B

T should be added

and only then will the D-H approximation be employed at the final stage. The electrostatic potential of a M-B structure is obtained by combining Poisson's equation with Boltzmann's statistics resulting in the Poisson-Boltzmann (P-B) equation: (e/k B

T) = (4n

0 e 2 /k B

T)[exp(+e/k

B

T) exp(e/k

B

T)] = (8n

0 e 2 /k B

T)sinh(e/k

B

T) (2)

or, in a reduced form [ = e/k B

T, = (8n

0 e 2 /k B T)]: 2

sinh (3)

The non-approximate M-B functions have frequently been used in physics, including nuclear matter and solid state physics [4]. The electrostatic potential is obtained as solution to the P-B equation. There are an unlimited number of solutions depending on the symmetry configuration: 1-D plane-wave, 2-D planar, 3-D spatial, spherical, cylindrical, etc. In the simplest 1-D case there is a minimal-frequency solution to (2): (x) = ln[cotan(½x)] 2 (4) The D-H approximation obtains at " 1 in (3) which gives: 2 (5) In 1-D the solution to (5) is the well-known Debye exponential:

(x) ~ exp(-x) (6)

Accordingly, the spherical-symmetry D-H potential drops away from the center at r = 0 as

(r) = (1/r) exp(-r) (7)

This potential is the analogue of the generator of Yukawa short-range force. The aperiodic and periodic 1-D potentials are depicted in Figure 1 and 2, respectively.

3. Yukawa equation

Deductions will be made of approximate Yukawa eigenfunctions aimed ultimately at solving the eigenvalue equation. In electrostatic problems, we set C = q 2 (q is the electric charge on the particle). (h 2

/2M) (C/r)exp(r) = E (8)

by using the substitution = [u(r)/r] Y lm (,) leading to the radial equation: (h 2 /2M)[d 2 /dr 2 l(l+1) / r 2 ]u (C/r)exp(r)]u = Eu (9) Setting exp(r) ~ 1 r at r " 1 we simplify the exponential to get accordingly (h 2 /2M)[d 2 /dr 2 l(l+1)/r 2 ] u (C / r)u = [E C]u (10) For C < 0, the eigenstates of (10) are the Coulomb functions [5], C > 0 leads to hydrogen eigenstates. = 0 to get an equation for leading to - (h 2 /2M) ['' 2'] + (C/r) exp(-r) = [E - (h 2 2 /2M)] (11) At kr " 1, exp(-r) ~ 1 r and then we ultimately get in lieu of the above: - (h 2 /2M) ['' 2'] + (C/r) = [E - (h 2 2 /2M) C] (12)

3. We rewrite equation (9) to get

(h 2 /2M)[d 2 /dr 2 l(l+1)/r 2 ] u C(1/r)[1 (1 - exp(-r))]u = Eu (13) At C<0, the screened potential is split into a Coulomb part (~1/r) and a reverse-sign part ~ (1/r)[1 - exp(-r)] <0. Consequently, the screened potential at C<0 gives rise to a parallel binding potential which is only vanishing at the singularity point at r = 0. Its maximum 1 is reached at » 1/r 0 or at r = . This parallel binding potential decreases the scattering potential of two Coulomb particles. As the screening concentratio is increased, the binding power increases too to completely compensate for the scattering at very large S = (8n 0 e 2 /k B T). Unless proven otherwise, this compensating power may be regarded as a concentration- dependent correction n = 1 - exp(-r) to be introduced to the scattering potential in (12) as

C(1/r)(1

n ). This is justified as long as n 0 stands for the statistical bulk average though not the actual concentration of charged defects whose distribution in an external field is given as above. For this reason n 0 and , for that matter, should only enter as parameters of the theory based on the Coulomb functions. Formally the parameter should enter into the effective charge q of the electrostatic problem giving q eff2 = q 2

4. Mathematically, the eigenvalue problem of the screening potential at intermediate carrier

concentrations can only be dealt with by solving a nonlinear problem, due to the dependence of = (n). Physically, there are two regimes where the problem can be regarded as a single-quotesdbs_dbs16.pdfusesText_22
[PDF] nombres complexes terminale s annales

[PDF] liaison intermoléculaire définition

[PDF] force dipole dipole

[PDF] interaction intermoléculaire definition

[PDF] force de debye exemple

[PDF] formule du champ magnétique

[PDF] exercice corrigé magnetisme

[PDF] induction magnétique formule

[PDF] clavier packard bell bloqué

[PDF] touche clavier packard bell ne fonctionne plus

[PDF] mémoire sur la satisfaction client pdf

[PDF] défi de fanfaron 7 lettres

[PDF] suivre le ramadan en 6 lettres

[PDF] mettre sous haute protection 8 lettres

[PDF] defi de fanfaron en 7 lettres