[PDF] PGCD - PPCM Théorèmes de Bézout et de Gauss





Previous PDF Next PDF



Contrôle de mathématiques

Énoncer puis démontrer le théorème de Gauss. Voir le cours. Exercice 2 de Bezout les entiers naturels n et 2n + 1 sont premiers entre eux.



Exercices pour préparer la composition du premier trimestre 2010

un multiple de 5. 3) Montrer que 2n + 1 et n sont premiers entre eux. 4) a). Déterminer suivant les valeurs de n et en fonction de n le PGCD de a et b.



PGCD ET NOMBRES PREMIERS

On dit que a et b sont premiers entre eux lorsque leur PGCD est égal à 1. Démontrer que pour tout entier naturel n 2n + 3 et 5n + 7 sont premiers entre ...



Exo7 - Exercices de mathématiques

Démontrer en raisonnant par récurrence



Cours darithmétique

Lorsque pgcd(a b) = 1



Exercices de mathématiques - Exo7

Exercice 11 ***IT. Pour n ? N on pose Fn = 22n. +1 (nombres de FERMAT). Montrer que les nombres de Fermat sont deux à deux premiers entre eux. Correction ?.



Corrigé de linterrogation darithmétique

Algorithme d'Euclide entre 128 et 30 : et 14n + 3 sont premiers entre eux. Exercice 4. ... pgcd(a b)=2min(2n



Arithmétique dans Z

1. Montrer que le reste de la division euclidienne par 8 du carré de tout nombre impair est 1. Montrer que pour m = n Fn et Fm sont premiers entre eux.



PGCD - PPCM Théorèmes de Bézout et de Gauss

15 juil. 2016 Exemple : : Montrer que (2n + 1) et (3n + 2) sont premiers entre eux ?n ? N. Il s'agit de trouver des coefficients u et v pour que u(2n + ...



UTM Département de Mathématiques et Informatique Année 2010

Trouver les entiers n ? 1 tels que n ? 1 divise n2 + 1. 3. Montrer que pour Montrer que n et 2n + 1 sont premiers entre eux. 2. On pose a = 2n + 1 et ...



[PDF] PGCD ET NOMBRES PREMIERS - maths et tiques

Démontrer que pour tout entier naturel n 2n + 3 et 5n + 7 sont premiers entre eux D'après le théorème de Bézout avec les coefficients 5 et -2 on peut 



[PDF] Ctrle : PGCD PPCM 06 12 2010 - Contrôle de mathématiques

Proposition 1 : Pour tout entier naturel n non nul n et 2n + 1 sont premiers entre eux Proposition vraie : en effet on a (?2)n+(1)(2n+1) = 1 donc d'après 



[PDF] Exercices pour préparer la composition du premier trimestre 2010

3) Montrer que 2n + 1 et n sont premiers entre eux 4) a) Déterminer suivant les valeurs de n et en fonction de n le PGCD de a et b On 



[PDF] Arithmétique - Exo7 - Exercices de mathématiques

Montrer que l'on peut se ramener au cas où x?y?z = 1 Montrer alors que dans ce cas x y et z sont de plus deux à deux premiers entre eux 2 On suppose 



[PDF] chapitre 1 : divisibilité et premiers

Si n ? 2 alors n est un produit de nombres premiers Montrer par une récurrence simple pour tout n ? 1 on a 1 1 · 2 sont premiers entre eux



[PDF] Exo7 - Exercices de mathématiques

17 103 04 Nombres premiers nombres premiers entre eux n(n+1)(2n+1) Démontrer en raisonnant par récurrence que 32n+2 ?2n+1 est divisible par 7 



[PDF] Chapitre n°7 : Entiers premiers entre eux - Scolamath

Montrer que 59 et 27 sont premiers entre eux puis déterminer un couple d'entiers relatifs (xy) tels que 59x + 27y = 1



[PDF] Cours darithmétique

Lorsque pgcd(a b) = 1 on dit que a et b sont premiers entre eux Exercice 19* (Nombres de Fermat) Montrer que si 2n + 1 est un nombre premier alors



[PDF] Arithmétique - PCSI 3

13 jan 2023 · Montrer que pour tout n ? 1 n2 divise (n + 1)n ? 1 108 Somme et produit de nombres premiers entre eux Soient a et b deux nombres premiers 



[PDF] Chapitre 1 Arithmétique Partie 6 : Nombres premiers entre eux

naturels non nuls et consécutifs est égal à 1 » • Démontrer que si * n?? les entiers n et 2n + 1 sont premiers entre eux 

  • Comment montrer que n et 2n 1 sont premiers entre eux ?

    pour montrer que n et 2n+1 sont premiers entre eux, il suffit d'appliquer le théorème de Bézout. a et b sont premiers entre eux, si il existe u et v dans Z tq au+bv=1. ( ie pgcd(a;b)=1). alors on applique ce théorème on a -2).
  • Comment démontrer que deux nombres sont premiers entre eux ?

    On dit que a et b sont premiers entre eux lorsque leurs seuls diviseurs communs sont 1 et ?1. Autrement dit, a et b sont premiers entre eux lorsque PGCD(a;b)=1.
  • Comment savoir si deux polynômes sont premiers entre eux ?

    On dit que deux polynômes non tous deux nuls sont premiers entre eux si leur PGCD est égal à 1.
  • Deux nombres entiers sont dits premiers entre eux lorsqu'il n'admette aucun diviseur commun, sinon l'unité. Par exemple 5 et 12 sont premiers entre eux, mais pas 12 et 15 qui admettent 3 comme diviseur commun.
DERNIÈRE IMPRESSION LE15 juillet 2016 à 11:11

PGCD - PPCM

Théorèmes de Bézout et de Gauss

Table des matières

1 Plus grand commun diviseur2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Nombres premiers entre eux. . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Algorithme d"Euclide. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Plus petit commun multiple4

3 Théorème de Bézout4

3.1 Égalité de Bézout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.2 Théorème de Bézout. . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Algorithme de Bézout. . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Corollaire de Bézout. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Le théorème de Gauss7

4.1 Le théorème. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.2 Corollaire du théorème de Gauss. . . . . . . . . . . . . . . . . . . . 8

4.3 Propriétés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

PAUL MILAN1TERMINALE S SPÉ

TABLE DES MATIÈRES

1 Plus grand commun diviseur

1.1 Définition

Définition 1 :Soitaetbdeux entiers relatifs non nuls. L"ensemble des diviseurs communs àaetbadmet un plus grand élémentD, appelé plus grand commun diviseur.

On note :D=pgcd(a,b)

Démonstration :Existence

L"ensemble des diviseurs communs àaetbest un ensemble fini car intersection de deux ensembles finis. De plus 1 diviseaetbdonc l"ensemble des diviseurs communs àaetbest non vide. Or tout ensemble fini non vide admet un plus grand élément doncDexiste.

Exemples :

pgcd(24,18) =6 pgcd(60,84) =12 pgcd(150,240) =30

Propriétés :

•Sibdiviseaalors pgcd(a,b) =|b|

•Pour tout entier naturelknon nul, on a : pgcd(ka,kb) =kpgcd(a,b).

1.2 Nombres premiers entre eux

Définition 2 :On dit queaetbsont premiers entre eux si et seulement si pgcd(a,b) =1 Exemple :pgcd(15,8) =1 donc 15 et 8 sont premiers entre eux. ?Il ne faut pas confondre des nombres premiers entre eux et des nombres pre- miers. 15 et 8 ne sont pas premiers et pourtant ils sont premiersentre eux. Par contre deux nombres premiers distincts sont nécessairementpremiers entre eux.

PAUL MILAN2TERMINALE S SPÉ

1. PLUS GRAND COMMUN DIVISEUR

1.3 Algorithme d"Euclide

Théorème 1 :Soitaetbdeux naturels non nuls tels quebne divise pasa. La suite des divisions euclidiennes suivantes finit par s"arrêter.Le dernier reste non nul est alors le pgcd(a,b) aparb a=bq0+r0avecb>r0?0 bparr0b=r0q1+r1avecr0>r1?0 r

0parr1r0=r1q2+r2avecr1>r2?0

r n-2parrn-1rn-2=rn-1qn+rnavecrn-1>rn?0 r n-1parrnrn-1=rnqn+1+0

On a alors pgcd(a,b) =rn.

Démonstration :

•La suite des restes :r0,r1,r2, ...,rnest une suite strictement décroissante dans

Ncarr0>r1>r2>···>rn.

Cette suite est donc finie. Il existe alorsntel quern+1=0.

Montrons que pgcd(a,b) =pgcd(b,r0).

SoitD=pgcd(a,b)etd=pgcd(b,r0).

DdiviseaetbdoncDdivisea-bq0=r0, doncDdivisebetr0donc :D?d ddivisebetr0doncddivisebq0+r0=a, doncddiviseaetbdonc :d?D On déduit de ces deux inégalités queD=d: pgcd(a,b) =pgcd(b,r0)

•De proche en proche, on en déduit que :

pgcd(a,b) =pgcd(b,r0) =···=pgcd(rn-2,rn-1) =pgcd(rn-1,rn) orrndivisern-1, donc pgcd(rn-1,rn) =rn Conclusion : pgcd(a,b) =rn. Le dernier reste non nul est le pgcd.

Exemple :

Calculer le pgcd(4 539,1 958).

On effectue les divisions euclidiennes suivantes :

4 539=1 958×2+623

1 958=623×3+89

623=89×7

Conclusion : pgcd(4 539,1 958) =89

Remarque :Le petit nombre d"étapes montre la performance de cet algorithme. Algorithme :Voici un algorithme d"Euclide que l"on peut proposer pour trou- ver le pgcd de deux nombres. On pourrait éventuellement utiliser l"algorithme de la division euclidienne à l"intérieur du programme, mais pourles besoins de simplicité, on utilisera la partie entière pour trouver le quotient.

PAUL MILAN3TERMINALE S SPÉ

TABLE DES MATIÈRES

Variables:a,b,q,rentiers naturels

Entrées et initialisation

Lirea,b

E(a/b)→q

a-bq→r

Traitement

tant quer?=0faire b→a r→b

E(a/b)→q

a-bq→r fin

Sorties: Afficherb

2 Plus petit commun multiple

Définition 3 :Soitaetbdeux entiers relatifs non nuls. L"ensemble des multiples strictement positifs communs àaet àbadmet un plus petit élémentM, appelé plus petit commun multiple.

On le note :M=ppcm(a,b).

Démonstration :Existence

L"ensemble des multiples strictement positifs àaet àbn"est pas vide. En effet|ab| est un multiple positif deaet deb. Toute partie non vide deNadmet un plus petit élément doncMexiste.

Exemple :

ppcm(18,12) =36 ppcm(24,40) =120 Pour additionner deux fractions, on recherche le dénominateur commun le plus petit qui n"est autre que le ppcm.

Propriétés :

•Sibdiviseaalors ppcm(a,b) =|a|

•Siaetbsont premiers entre eux alors ppcm(a,b) =|ab|

•On a :ab=ppcm(a,b)×pgcd(a,b)

3 Théorème de Bézout

3.1 Égalité de Bézout

Théorème 2 :Soitaetbdeux entiers non nuls etD=pgcd(a,b) Il existe alors un couple(u,v)d"entiers relatifs tels que : au+bv=D

PAUL MILAN4TERMINALE S SPÉ

3. THÉORÈME DE BÉZOUT

Démonstration :

SoitGl"ensemble formé par les entiers naturels strictement positifs dela forme ma+nboùmetnsont des entiers relatifs. Gest une partie deNnon vide : on vérifie facilement que|a|?G. Gadmet donc un plus petit élémentdtel qued=au+bv •D=pgcd(a,b)diviseaetbdoncDdiviseau+bv=det doncD?d

•Montrons queddivisea

Divisonsapard, on a alorsa=dq+ravec 0?r

On isole le reste et on remplacedparau+bv:

r=a-dq=a-auq-bvq=a(1-uq) +b(-vq) Doncr=0. En effet sir?=0 alorsr?G, orr•conclusion :D?detd?DdoncD=d.

Conséquence: Tout diviseur commun àaetbdivise leur pgcd.

3.2 Théorème de Bézout

Théorème 3 :Deux entiers relatifsaetbsont premiers entre euxsi et seulement si, il existe deux entiers relatifsuetvtels que : au+bv=1

ROCDémonstration :

Dans le sens?: Immédiat grâce à l"égalité de Bézout.

Dans le sens?: (réciproquement)

On suppose qu"il existe deux entiersuetvtels que :au+bv=1.

DoncDdivise 1. On a bienD=1.

Exemple :: Montrer que(2n+1)et(3n+2)sont premiers entre eux?n?N. Il s"agit de trouver des coefficientsuetvpour queu(2n+1) +v(3n+2) =1. -3(2n+1) +2(3n+2) =-6n-3+6n+4=1 ?n?N, il existeu=-3 etv=2 tel queu(2n+1) +v(3n+2) =1.

Les entiers(2n+1)et(3n+2)sont premiers entre eux.

Exemple :Montrer que 59 et 27 sont premiers entre eux puis déterminer un couple(x,y)tel que : 59x+27y=1 Pour montrer que 59 et 27 sont premiers entre eux on effectue l"algorithme d"Eu- clide et pour déterminer un couple(x,y), on remonte l"algorithme d"Euclide :

PAUL MILAN5TERMINALE S SPÉ

TABLE DES MATIÈRES

59=27×2+5(1)

27=5×5+2(2)

5=2×2+1(3)

59 et 27 sont premiers entre eux.

On remonte l"algorithme d"Euclide :

2×2=5-1

On multiplie l"égalité (2) par 227×2=5×10+2×2

27×2=5×10+5-1

27×2=5×11-1

5×11=27×2+1

on multiplie l"égalité (1) par 11

59×11=27×22+5×11

59×11=27×22+27×2+1

59×11=27×24+1

On a donc : 59×11+27×(-24) =1

3.3 Algorithme de Bézout

Il s"agit de déterminer un couple(u;v)

d"entiers relatifs sachant que les entiers aetbsont premiers entre eux. On doit donc avoir :au+bv=1

On isole le premier terme :

au=b(-v) +r

On teste, en incrémentantu, le reste de

la division dem=auparb. Tant que le reste est différent de 1, on réitère la division.

Onanalyseradeplussileréelbestposi-

tif ou non pour déterminer le quotient.

Une foisutrouvé, on déterminev:

v=1-m bOn teste ce programme avec :a=59 et b=27

On trouve alors :u=11 etv=-24

Variables:a,b,u,v,m,rentiers

Entrées et initialisation

Lirea,b

0→r

0→u

Traitement

tant quer?=1faire u+1→u au→m sib>0alors m-E?mb?

×b→r

sinon m-E?mb+1?

×b→r

fin fin 1-m b→v

Sorties: Afficheruetv

3.4 Corollaire de Bézout

Théorème 4 :L"équationax+by=cadmet des solutions entières si et seulement sicest un multiple du pgcd(a,b).

Démonstration :

Dans le sens?

ax+by=cadmet une solution(x0,y0).

CommeD=pgcd(a,b)diviseaetbil diviseax0+by0.

Ddivise doncc

Dans le sens?(réciproquement)

cest un multiple deD=pgcd(a,b).

Donc il existe un entier relatifktel que :c=kd

PAUL MILAN6TERMINALE S SPÉ

4. LE THÉORÈME DE GAUSS

De l"égalité de Bézout, il existe deux entiers relatifsuetvtels que : au+bv=D

En multipliant park, on obtient :

auk+bvk=kD?a(uk) +b(vk) =c

Donc il existex0=ukety0=vktels queax0+by0=c

Exemple :L"équation 4x+9y=2 admet des solutions car pgcd(4,9) =1 et 2 multiple de 1 L"équation 9x-15y=2 n"admet pas de solution car pgcd(9,15) =3 et 2 non multiple de 3

4 Le théorème de Gauss

4.1 Le théorème

Théorème 5 :Soita,betctrois entiers relatifs non nuls. Siadivise le produitbcet siaetbsont premiers entre eux alorsadivisec. ROCSiadivise le produitbc, alors il existe un entierktel que :bc=ka Siaetbsont premiers entre eux, d"après le théorème de Bézout, il existe deux entiersuetvtels que :au+bv=1

En multipliant parc, on a :

acu+bcv=corbc=ka, donc : acu+kav=c a(cu+kv) =c

Doncadivisec.

Exemple :Trouver les solutions dansZ2de l"équation : 5(x-1) =7y

5 divise 7y, or pgcd(5,7) =1, donc d"après le théorème de Gauss 5 divisey. On

a donc :y=5k

En remplaçant dans l"équation, on a :

5(x-1) =7×5k?x-1=7k?x=7k+1

Les solutions sont donc de la forme :

?x=7k+1 y=5kk?Z

PAUL MILAN7TERMINALE S SPÉ

TABLE DES MATIÈRES

4.2 Corollaire du théorème de Gauss

Théorème 6 :Sibetcdiviseaet sibetcsont premiers entre eux alorsbc divisea. ROCDémonstration :: Sibetcdivisea, alors il existeketk?entiers relatifs tels que : a=kbeta=k?cdonc :kb=k?c bdivisek?c, or pgcd(b,c) =1 donc d"après le théorème de Gaussbdivisek? donc :k?=k??b a=k?c=k??bc

Doncbcdivisea.

Exemple :Si 5 et 12 divisea, comme 5 et 12 sont premiers entre eux, 5×12=60 divisea.

4.3 Propriétés

Ces propriétés découlent du théorème de Bézout et de Gauss. Propriété 1 :Soitaetbdeux entiers non nuls,Dleur pgcd etMleur ppcm. •Il existe deux entiersa?etb?premiers entre eux tels que : a=Da?etb=Db?

•On a les relations suivantes :

M=Da?b?etab=MD

PAUL MILAN8TERMINALE S SPÉ

quotesdbs_dbs41.pdfusesText_41
[PDF] exercice calcul tva ht ttc

[PDF] on note dn le pgcd de n(n+3) et de (2n+1)

[PDF] pgcd(a^2 b^2)

[PDF] montrer que n et n+1 sont premiers entre eux

[PDF] pgcd*ppcm=ab

[PDF] ppcm de deux nombres premiers entre eux

[PDF] cours developpement communautaire

[PDF] montrer qu'il existe une infinité de nombres premiers de la forme 4n+1

[PDF] extraction du charbon

[PDF] origine du charbon

[PDF] 3 conditions necessaires a la formation du charbon

[PDF] la formation des combustibles fossiles schéma

[PDF] origine des combustibles fossiles seconde

[PDF] formation du charbon schéma

[PDF] somme de racine carré