[PDF] Calcul Algébrique Ce chapitre est consacré à la





Previous PDF Next PDF



Nombres complexes - Ecriture algébrique- conjugué

Nombres complexes - Ecriture algébrique- conjugué. Fiche exercices. EXERCICE 1. Mettre chacun des nombres complexes sous forme algébrique :.



NOMBRES COMPLEXES - Chamilo

V. RACINE nième D'UN NOMBRE COMPLEXE. 1. Sous forme polaire. 2. Sous forme algébrique. VI. EQUATION DU SECOND DEGRE À COEFFICIENTS COMPLEXES.



Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1 : On donne 0

(2? )3 . Allez à : Correction exercice 1 : Exercice 2 : Mettre sous la forme +



Olivier Glorieux

Soit on commence par mettre sous forme algébrique le nombre complexe. ?. 3 ? i. 1 + i. ?. 3 en multipliant par le conjugué du dénominateur et on passe à 



Forme trigonométrique dun nombre complexe – Applications

On note z = a + ib la forme algébrique du complexe z. Théorème – Définition : Tout nombre complexe non nul z s'écrit sous la forme suivante :.



Effectuer des calculs algébriques avec les nombres complexes

Tout nombre complexe z peut s'écrire sous la forme unique x + iy où x et y sont deux réels. Cette forme est la forme algébrique du nombre complexe z



Nombres complexes

Mettre sous la forme a+ib (ab ? R) les nombres : Déterminer le module et l'argument des nombres complexes : eei? et ei? +e2i? . Indication ?.



Nombres complexes 1 Forme cartésienne forme polaire

Exercice 1 Mettre sous la forme a + ib (a b ? R) les nombres : Quotient du nombre complexe de module 2 et d'argument ?/3 par le nombre complexe.



Calcul Algébrique

Ce chapitre est consacré à la manipulation de formules algébriques constituées de Mettre sous la forme a + ib les nombres complexes suivants.



5 Nombres Complexes

La forme algébrique d'un nombre complexe est unique. On en déduit donc que deux Pour mettre un nombre complexe z = a + ib sous forme trigonométrique.



[PDF] Nombres complexes : forme algébrique

L'écriture z = x +iy avec x et y réels est appelée forme algébrique du nombre complexe z = x +iy • Dans ce cas x est appelé la partie réelle de z et notée 



[PDF] Nombres complexes - Ecriture algébrique - Meilleur En Maths

Mettre chacun des nombres complexes sous forme algébrique : – z1=2(6?5i)?3(4+ i) Écrire sous forme algébrique le nombre complexe conjugué de z1 et z2



[PDF] NOMBRES COMPLEXES

L'écriture z = a + ib où a et b sont des réels est appelée forme algébrique du nombre complexe z a est appelé partie réelle de z et b partie imaginaire de 



[PDF] Pascal Lainé 1 NOMBRES COMPLEXES Exercice 1

Mettre sous la forme + ? ? (forme algébrique) les nombres complexes 1 = Ecrire sous forme algébrique les nombres complexes suivants



[PDF] NOMBRES COMPLEXES – Chapitre 1/2 - maths et tiques

Définition : On appelle forme algébrique d'un nombre complexe l'écriture 1) Écrire les nombres complexes suivants sous la forme exponentielle :



[PDF] NOMBRES COMPLEXES - Chamilo

V RACINE nième D'UN NOMBRE COMPLEXE 1 Sous forme polaire 2 Sous forme algébrique VI EQUATION DU SECOND DEGRE À COEFFICIENTS COMPLEXES



[PDF] Nombres complexes - Forme algébrique - Parfenoff org

Cette écriture est dite forme algébrique du nombre complexe Pour écrire le quotient de deux nombres complexes sous forme algébrique on



[PDF] NOMBRES COMPLEXES

Il décide en outre de lui appliquer une règle algébrique connue en Un nombre complexe z est un nombre qui s'écrit sous la forme z = a+ bi où a et b 



[PDF] Effectuer des calculs algébriques avec les nombres complexes

Tout nombre complexe z peut s'écrire sous la forme unique x + iy où x et y sont deux réels Cette forme est la forme algébrique du nombre complexe z le

  • Comment mettre sous forme algébrique des nombres complexes ?

    On appelle forme algébrique (ou cartésienne) d'un nombre complexe z = (x, y) l'expression z = x +jy. si x = 0, alors z = jy est un nombre imaginaire pur: z ?I L'ensemble des nombres imaginaires purs se note I.
  • Comment donner la forme algébrique ?

    Tout élément z de s'écrit de manière unique : z = a + ib (a et b réels), donc si z = a + ib et z' = a' + ib', z = z' ? a = a' et b = b'. a + ib (a et b réels) s'appelle la forme algébrique du nombre complexe z. Le réel a s'appelle la partie réelle de z, notée Re(z).
  • Comment comparer deux nombres complexes ?

    Deux nombres complexes sont égaux si et seulement si ils ont même partie réelle et même partie imaginaire. Le conjugué de z est le complexe ¯z défini par ¯z = a ? ib. On utilise fréquemment les propriétés z = ¯z ? z ? R, et z = ?¯z ? z ? iR (c'est `a dire z imaginaire pur).
  • On désigne par ? l'ensemble des nombres complexes et par « i » un élément de ? tel que i 2 = ?1. Tout nombre complexe z s'écrit de manière unique : z = a + ib avec a ? ? et b ? ?.

Université Joseph Fourier, Grenoble I

Mathématiques, Informatique et Mathématiques Appliquées Licence Sciences et Technologies1eannéeCalcul Algébrique

Eric Dumas, Emmanuel Peyre, Bernard Ycart

Ce chapitre est consacré à la manipulation de formules algébriques, constituées de variables formelles, de réels ou de complexes. L"objectif est essentiellement pratique : " savoir calculer ». La seule nouveauté réside dans la manipulation de formules avec indices, utilisant les symboles?(somme) et?(produit). Pour le reste, vous aurez simplement à réviser votre cours de terminale sur les nombres complexes.

Table des matières

1 Cours 2

1.1 Sommes et produits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Trois formules à connaître . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Nombres complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Formes trigonométrique et exponentielle . . . . . . . . . . . . . . . . . 13

1.5 Géométrie du plan complexe . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Entraînement 17

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 Les formules de Ramanujan . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Le Rapido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Si non è vero, è bene trovato . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 La marquise de Tencin . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Equations résolubles par radicaux . . . . . . . . . . . . . . . . . . . . . 42

Maths en L

1gneCalcul AlgébriqueUJF Grenoble1 Cours

1.1 Sommes et produits

Nous commençons par les sommes.

L"écriture

5? k=02k se lit "somme pourkallant de zéro à cinq de deux puissancek». C"est une notation abrégée pour : 2

0+ 21+ 22+ 23+ 24+ 25.

La lettrekest l"indice de sommation. On la remplace successivement par toutes les valeurs entières comprises entre les deuxbornes, qui sont0et5dans notre exemple. La première borne, celle qui est écrite au-dessous du signe somme, sera toujours inférieure ou égale à celle qui est au-dessus. Les bornes peuvent elles-mêmes être des variables, mais elles sont nécessairement différentes de l"indice de sommation. Par exemple, pour tout entier natureln:n? k=02k désigne la somme 2

0+ 21+ 22+ 23+···+ 2n-1+ 2n.

Rappelons que, par convention,a0= 1pour tout nombre réela. Prenez l"habitude d"écrire les sommes sous forme développée quitte à introduire des points de suspension entre les premiers termes et les derniers. Voici quelques exemples d"égalités illustrant la manipulation des indices et des bornes. Nous donnons sous chaque exemple une

écriture sous forme développée.

n k=12k=n-1? h=02h+1 2

1+···+ 2n= 20+1+···+ 2n-1+1.

L"indice de sommation peut être remplacé par n"importe quel autre : on dit que c"est unevariable muette. n k=02k+n h=12n+h=2n? k=02k (2

0+···+ 2n) + (2n+1+···+ 22n) = 20+···+ 22n.

Observez que la borne peut être une des variables de la quantité à sommer. n k=02n= (n+ 1)2n 2 n+···+ 2n= (n+ 1)2n. 2

Maths en L

1gneCalcul AlgébriqueUJF GrenobleDans cet exemple la quantité à sommer ne dépend pas de l"indice de sommation : celle-

ci a pour seul effet de compter les termes. Attention, pourm6n, il y an-m+ 1 termes dans la somme demàn. n k=01 h=02k+h=1 h=0n k=02k+h (2

0+ 21) +···+ (2n+ 2n+1) = (20+···+ 2n) + (21+···+ 2n+1).

Une double somme est une somme de sommes, et on peut toujours intervertir les deux. Voici un enchaînement d"égalités, montrant que la somme des puissances de2de20 jusqu"à2nvaut(2n+1-1)(c"est un cas particulier d"une formule à connaître que nous verrons plus loin). Pour chaque ligne de calcul, nous donnons à droite l"écriture sous forme développée. On rappelle que20= 1. n k=02k= 2? n? k=02k? n? k=02k?= 2(2

0+···+ 2n)-(20+···+ 2n)

n? k=02k+1? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

n+1? h=12h? n? k=02k?= (2

1+···+ 2n+1)-(20+···+ 2n)

= 2 n+1-20= 2 n+1-1. Ce que nous venons de voir pour les sommes s"applique aussi aux produits. Le produit des entiers de1ànintervient dans de nombreuses formules. C"est lafactorielle den. Elle se note "n!». n! =n k=1k= 1 2 3···(n-2) (n-1)n . Il est souvent utile d"étendre la définition de la factorielle en convenant que0! = 1. Voici les premières valeurs.n0 1 2 3 4 5 6 7 8 9 10 n!1 1 2 6 24 120 720 5040 40320 362880 3628800 Sinest un entier positif, unn-upletdésigne une liste ordonnée denobjets. On appellepermutation des nombres de1ànunn-uplet d"entiers(u1,...,un)dans lequel chaque entier entre1etnapparaît une et une seule fois. Par exemple(5,3,2,4,1)est une permutation des nombres de1à5. Théorème 1.Le nombre de permutations des nombres de1ànestn!. Démonstration: On montre le théorème par récurrence surn. 3

Maths en L

1gneCalcul AlgébriqueUJF GrenobleSin= 1, la seule permutation des entiers de1à1est(1).

On suppose donc que le résultat est vrai pour l"entiern. Montrons-le pour l"entier n+1. Soitkun entier tel que16k6n+1et comptons le nombreAkde permutations (u1,...,un+1) telles queuk=n+ 1. À une telle permutation, associons len-uplet : (u1,...,uk-1,uk+1,...,un+1). C"est une permutation des nombres de1àn. Inversement étant donnée une permutation (v1,...,vn)des entiers de1àn, alors (v1,...,vk-1,n+ 1,vk+1,...,vn) est une permutation des entiers de1àn+ 1dont lek-ième terme estn+ 1. En appliquant l"hypothèse de récurrence, on obtient queAk=n!. Donc le nombre total de permutations des nombres de1àn+ 1est : n+1? k=1A k=n+1? k=1n! = (n+ 1)n! = (n+ 1)!. ce qui montre le résultat pourn+ 1. Pour ordonnernobjets, il faut associer à chacun un nombre entre1etnde sorte que chaque nombre renvoie à un objet et un seul. Il y a autant de manières de le faire que de permutations desnpremiers entiers :n!. Au tiercé, il y a5! = 120manières d"ordonner les 5 premiers chevaux. Une seule donne l"ordre d"arrivée, soit le quinté dans l"ordre, et il y a119quintés dans le désordre. Lenombre de combinaisonsdekobjets parminest le nombre de manières de choisir kobjets parmin, sans distinguer leur ordre. ?n k? =n!k!(n-k)!.(1)

La notation

?n k?que nous utilisons ici, de préférence à l"ancienne notationCkn, est conforme aux programmes en vigueur et à l"usage international. Nous conseillons de la lire " denchoisirk». La formule (1) correspond au raisonnement suivant. Pour choisirkobjets, on peut se donner une permutation desnobjets, et décider d"en retenir leskpremiers. Parmi les permutations, toutes celles qui auront en commun leurskpremiers nombres conduiront au même choix. Il faut donc diviser par le nombre de permutations deskobjets choisis, et par le nombre de permutations desn-kobjets qui ne l"ont pas été. Observez que (1) ne change pas si on remplacekparn-k. ?n k? =?n n-k? 4

Maths en L

1gneCalcul AlgébriqueUJF GrenobleChoisirkobjets parmin(ceux que l"on garde) revient à en choisirn-k(ceux que l"on

laisse).

Voici une autre expression de?n

k?. ?n k? =1k!k-1? h=0(n-h) =n(n-1)···(n-k+ 1)1 2···k.(2) Notez qu"il y akfacteurs au numérateur, comme au dénominateur. On obtient cette formule en simplifiant le quotientn!/(n-k)!dans (1). On peut aussi raisonner comme suit. Il y anfaçons de choisir le premier objet, puisn-1de choisir le second (puisqu"un objet a déjà été choisi), etc. Pour choisir le k-ième objet, il resten-(k-1)possibilités. Ceci correspond au numérateur de (2). Cette manière de procéder retourne une liste ordonnée. Il faut donc diviser par le nombre d"ordres possibles deskobjets choisis, qui estk!. Observez les relations suivantes, faciles à déduire de (1) ou (2) et de la définition de la factorielle. ?n k? =nk n-1 k-1? =n-k+ 1k n k-1?

Pour calculer

?n k?en pratique, on n"utilise ni (1) ni (2). Le calcul récursif par la formule dutriangle de Pascal(connue des chinois bien avant Pascal) est beaucoup plus rapide.?n k? =?n-1 k? +?n-1 k-1? .(3) Nous conseillons au lecteur de démontrer cette formule à partir des expressions (1) et (2). Voici la justification combinatoire. Supposons que parmi lesnobjets dontk doivent être choisis, l"un d"entre eux soit distingué (disons qu"il est rouge). Parmi les choix possibles dekobjets, certains ne contiennent pas l"objet rouge, d"autres le contiennent. Les premiers sont au nombre de?n-1quotesdbs_dbs41.pdfusesText_41
[PDF] cours nombres complexes 1sti2d

[PDF] droite linéaire

[PDF] exercice nombre relatif pdf

[PDF] application bilinéaire exercices corrigés

[PDF] écrire en portugais

[PDF] comment traduire un mail sur gmail

[PDF] verbe écrire en portugais

[PDF] gmail correcteur orthographique anglais

[PDF] gmail en français internet

[PDF] traduction gmail android

[PDF] changer langue correcteur gmail

[PDF] alphabet portugais clavier

[PDF] forme canonique en ligne

[PDF] classification des nombres

[PDF] catégories de nombres