[PDF] Group Homomorphisms 17-Jan-2018 A homomorphism





Previous PDF Next PDF



Devoir 1 pour le 12 Mars Exercice 1

Déterminons donc la dimension et une base de Kerf. En posant u = dim (Kerf)=1. 2. Quel est le rang de f (i.e. la dimension de Imf)?. Puisque f est un ...



Solutions to Homework 8 - Math 3410 1. (Page 190: # 5.49(b)) Let a

F is not linear since it doesn't map the zero vector to the zero vector. (c) Let x = y = 1 and c = 2. Therefore dim(ker(F)) = 2 and dim(im(F)) = 2.



Les 3 formes dun système linéaire

Le noyau de f noté par Ker(f )



Chapter 4 - Module Fundamentals

The kernel of a homomorphism f is ker f = {x ? M : f(x)=0} Any two bases for a free module M over a commutative ring R have the same cardinality.



Chapitre 17 : Applications linéaires

est linéaire déterminer ker (f) et Im (f). +: Méthode de base : Soient u = ... Montrer que f ? L(M2 (R)) déterminer kerf



Chap 04 - Espaces vectoriels endomorphismes et matrices

d) Quelle est la matrice de f relativement à une base C adaptée à la supplémentarité de Imf et Kerf ? 2. Soit E un K?espace vectoriel de dimension finie n 



Group Homomorphisms

17-Jan-2018 A homomorphism from G to H is a function f : G ? H such that ... Find ker f im f



Noyau et image des applications linéaires

Si f : E ? F est une application linéaire son noyau



Rappels sur les applications linéaires

sous-espace vectoriel de F appelé image de f et noté Im f. Soit {w1





[PDF] Noyau et image des applications linéaires

Définition Si f : E ? F est une application linéaire son noyau noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ? Ef (v)=0}



[PDF] Noyau et image des applications linéaires

Définition Si f : E ? F est une application linéaire son noyau noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ? Ef (v)=0} Exemple



[PDF] Rappels sur les applications linéaires - Université de Rennes

La dimension de Im f est appelée rang de f et est notée rg f Proposition 6 – Soit f : E ? F une application linéaire On pose Ker f = {x ? E ; f(x)= 



[PDF] Les 3 formes dun système linéaire

Base de Ker(f) Théorème Pour toute application linéaire f : Rm ? Rn Ker(f ) est un sous espace vectoriel de Rm Preuve Il faut vérifier que pour tout u 



[PDF] Applications linéaires matrices déterminants

En déduire la dimension de im( ) 2 Déterminer la dimension de ker( ) et en donner une base Allez à : Correction exercice 21 Exercice 22



[PDF] Devoir 1 pour le 12 Mars Exercice 1

Déterminons donc la dimension et une base de Kerf En posant u = Donc on en déduit que rg(f) = dim (Imf) = dim(R3) ? dim (Kerf)=3 ? 1=2



[PDF] Espaces vectoriels et applications linéaires Correction des exercices

Exercice 32 : Soit E un espace vectoriel de dimension finie et (fg) deux endomorphismes de E avec E = Im(f)+Im(g) = Ker(f)+Ker(g) Montrer que E = Im(f)? im 



[PDF] Applications linéaires 1 Définition 2 Image et noyau

Exercice 5 Soient E un espace vectoriel de dimension n et f une application linéaire de E Montrer que f ? L(E) donner une base de Imf et de Ker(f)



[PDF] Applications linéaires - Exo7 - Exercices de mathématiques

Montrer que Ker f et Im f sont stables par g Soit E un espace vectoriel de dimension 3 {e1e2e3} une base de E et t un paramètre réel



[PDF] IV Applications linéaires

Soit f:E ? F une application linéaire et (e1 en) une base de E On note ui dim Kerf = 0 ? dim Imf = dimE autrement dit f est injective si et 

  • Comment déterminer la base de KERF ?

    Le noyau de f , noté par Ker(f ), est l'ensemble des antécédents du vecteur 0 : Ker(f ) = {x f (x) = 0} = {x Ax = 0} = l'ensemble solutions du système Ax = 0 .
  • Comment déterminer IMF et KERF ?

    Il résulte de la formule de dimension : 3 = dimE = dim Imf + dim kerf = dim Imf + 1 . Ainsi, l'image de f est un espace vectoriel de dimension 2. D'apr`es le cours, puisque (e1,e2,e3) engendrent E, Imf est engendré par f(e1),f(e2),f(e3). Déterminons une base de Imf eche- lonnée dans la base (e1,e2,e3).
  • Comment déterminer une base de F ?

    Pour trouver une base d'un sous-espace vectoriel F , on peut :

    1chercher une famille génératrice B de F ;2si B est libre, c'est terminé, sinon, un des vecteurs peut s'exprimer en fonction des autres. On le supprime et on recommence jusqu'à trouver une famille libre.
  • Définition Si f : E ? F est une application linéaire, son noyau, noté Kerf est l'ensemble des vecteurs de E que f annule : Kerf := {v ? Ef (v)=0}.
Group Homomorphisms

1-17-2018

Group Homomorphisms

Here are the operation tables for two groups of order 4:

·1aa2

11aa2 aaa21 a2a21a +012 0012 1120
2201

There is an obvious sense in which these two groups are "the same": You can get the second table from

the first by replacing 0 with 1, 1 witha, and 2 witha2.

When are two groups the same?

You might think of saying that two groups are the same if you can get one group"s table from the other

by substitution, as above. However, there are problems withthis. In the first place, it might be very difficult

to check - imagine having to write down a multiplication table for a group of order 256! In the second

place, it"s not clear what a "multiplication table" is if a group is infinite. One way to implement a substitution is to use a function.In a sense, a function is a thing which

"substitutes" its output for its input. I"ll define what it means for two groups to be "the same" by using

certain kinds of functions between groups. These functionsare calledgroup homomorphisms; a special kind of homomorphism, called anisomorphism, will be used to define "sameness" for groups. Definition.LetGandHbe groups. AhomomorphismfromGtoHis a functionf:G→Hsuch that f(x·y) =f(x)·f(y) for allx,y?G. Group homomorphisms are often referred to asgroup mapsfor short. Remarks.1. In the definition above, I"ve assumed multiplicative notation for the operations in bothG

andH. If the operation in one or both is something else, you must adjust the definition accordingly. For

instance:

Operation inGOperation inHGroup map definition

++f(x+y) =f(x) +f(y) +·f(x+y) =f(x)·f(y)

·+f(x·y) =f(x) +f(y)

??f(x?y) =f(x)? f(y)

2. You have seen patterns like this before; for example, "Thederivative of a sum is the sum of the

derivatives".

Lemma.LetGbe a group and letHbe a subgroup.

(a) The identity map id :G→Gdefined by id(x) =xis a group map. (b) The inclusion mapi:H→Gdefined by?(x) =xis a group map. Proof.I"ll prove (a); the proof of (b) is the same. Letx,y?G. Then id(x·y) =x·y= id(x)·id(y). 1

Hence, id is a group map.

Example.(Constant maps are usually not group maps) For the groupZunder addition, define f:Z→Zby f(n) = 3 for alln?Z.

Show thatfis not a group map.

f(1 + 1) =f(2) = 3,butf(1) +f(1) = 3 + 3 = 6.

Example.(Logs and exponentials) (a) Prove that the exponential function exp : (R,+)→(R+,·) given

by exp(x) =exis a group map. (b) Prove that the natural log function ln : (R+,·)→(R,+) is a group map. (a) Letx,y?R. Then by properties of exponentials, exp(x+y) =ex+y=ex·ey= exp(y)·exp(y). (b) Letx,y?R+. Then by properties of logarithms, ln(x·y) = lnx+ lny. Example.(Checking whether a function is a group map) (a) Definef:Z→Zby f(x) = 5x.

Prove or disprove:fis a group map.

(b) Defineg:Z→Zby g(x) =x2.

Prove or disprove:fis a group map.

(a)fis a group map: Ifx,y?Z, then f(x+y) = 5(x+y) = 5x+ 5y=f(x) +f(y). (b) g(2 + 3) =g(5) = 52= 25,butg(2) +g(3) = 22+ 32= 4 + 9 = 13.

Sinceg(2 + 3)?=g(2) +g(3),gis not a homomorphism.

Lemma.LetVandWbe vector spaces over a fieldF, considered as groups under vector addition. Let T:V→Wbe a linear transformation. ThenTis a group map. Proof.This follows immediately from one of the axioms for a linear transformation: Ifx,y?V, then

T(x+y) =T(x) +T(y).

2 Example.R3andR2are groups under vector addition. DefineT:R3→R2by

T(x,y,z) = (2x+ 8y-z,x+ 5y-3z).

Prove thatTis a group map.

WriteTas a matrix multiplication:

T ??x y?? =?2 8-1

1 5-3??

x y? From linear algebra, this defines a linear transformation. Hence,Tis a group map by the previous lemma. Example.(A group map on a matrix group) LetM(2,R) be the group of 2×2 reals matrices under matrix addition. Let tr :M(2,R)→Rdenote thetrace map: tr ??a b c d?? =a+d.

Show that tr is a group homomorphism.

Now tr??a b c d? +?a?b? c ?d??? = tr??a+a?b+b? c+c?d+d??? = (a+a?) + (d+d?), tr ??a b c d?? + tr??a?b? c ?d??? = (a+d) + (a?+d?). Thus, tr??a b c d? +?a?b? c ?d??? = tr??a b c d?? + tr??a?b? c ?d???

Therefore, tr is a homomorphism.

Lemma.Letf:G→Hbe a group homomorphism. Then:

(a)f(1G) = 1H, where 1Gis the identity inGand 1His the identity inH. (b)f(x-1) =f(x)-1for allx?G.

Proof.(a)

f(1G) =f(1G·1G) =f(1G)·f(1G). If I cancelf(1G) off both sides, I obtainf(1G) = 1H. (b) Letx?G. f(x)·f(x-1) =f(x·x-1) =f(1G) = 1H f(x-1)·f(x) =f(x-1·x) =f(1G) = 1H This shows thatf(x-1) is the inverse off(x), i.e.f(x)-1=f(x-1). Warning.The properties in the last lemma are not part of thedefinitionof a homomorphism. To show

thatfis a homomorphism, all you need to show is thatf(a·b) =f(a)·f(b) for allaandb. The properties

in the lemma are automatically true of any homomorphism. 3 On the other hand, if you want to show a function isnota homomorphism, do a quick check: Does it send the identity to the identity? If not, then the lemma shows it"snota homomorphism. Example.(Group maps must take the identity to the identity) LetZdenote the group of integers with addition. Definef:Z→Zby f(x) =x+ 1.

Prove thatfis not a group map.

Note thatf(0) = 1. Since the identity 0?Zis not mapped to the identity 0?Z,fcannot be a group homomorphism. Warning: If a function takes the identity to the identity, itmay or may not be a group map. Consider g:Z→Zgiven by g(x) = sinx. g(0) = sin0 = 0, but this doesn"t mean thatgis a homomorphism. In fact, g

2+π2?

=g(π) = sinπ= 0,butg?π2? +g?π2? = sinπ2+ sinπ2= 1 + 1 = 2. The point is that simple-looking functions you may have seenin other math classes need not be homo- morphisms. When in doubt, check the definition. There are several important subsets associated to a group homomorphismf:G→H.

Definition.Letf:G→Hbe a group homomorphism.

(a) Thekerneloffis kerf={g?G|f(g) = 1}. (b) Theimageoffis (as usual) imf={f(g)|g?G}. (c) LetH?< H. Theinverse imageofH?is (as usual) f -1(H?) ={g?G|f(g)?H?}. Warning.The notationf-1(H?)does not implythat theinverseoffexists.f-1(H?) is simply the set of inputs whichfmaps intoH?; thisisf-1applied to the setH?if there is af-1(but there need not be).

Lemma.Letf:G→Hbe a group map.

(a) kerfis a subgroup ofG. (b) imfis a subgroup ofH. (c) IfH?is a subgroup ofH, thenf-1(H?) is a subgroup ofG.

Proof.(a) First,

f(1) = 1,so 1?kerf.

Supposex,y?kerf. Then

f(xy) =f(x)f(y) = 1·1 = 1. 4

Hence,xy?kerf.

Finally, supposex?kerf. Then

f(x-1) =f(x)-1= 1-1= 1.

Hence,x-1?kerf. Therefore, kerfis a subgroup ofG.

(b) 1?imfsincef(1) = 1.

Supposef(x),f(y)?imf. Then

f(x)f(y) =f(xy)?imf.

Finally, supposef(x)?imf. Then

f(x)-1=f(x-1)?imf.

Therefore, imfis a subgroup ofH.

(c) LetH?be a subgroup ofH. I want to show thatf-1is a subgroup ofG. Reminder: The criterion for membership inf-1(H?) is thatftakes the element intoH?.

Since 1?H?andf(1) = 1, it follows that 1?f-1(H?).

Supposex,y?f-1(H?). This means thatf(x) andf(y) are inH?. SinceH?is a subgroup,f(x)f(y) is inH?as well. But f(x)f(y) =f(xy). Therefore,f(xy) is inH?, which means thatxy?f-1(H?). Finally, supposex?f-1(H?), sof(x)?H?. SinceH?is a subgroup,f(x)-1?H?. Butf(x)-1= f(x-1), sof(x-1)?H?. This means thatx-1?H?.

Hence,f-1(H?) is a subgroup ofG.

Example.(Finding the kernel and image) (a) Let

S

1={z?C| |z|= 1}.

Show thatS1is a group under multiplication of complex numbers. (b) Definef:R→S1by f(t) =e2πit. Show thatfis a group map, and find its kernel and image. (a) Each elementz?S1can be uniquely written in the form

Note that

e

2πise2πit=e2πi(s+t).

This shows that multiplication is closed (hence a binary operation) onS.

Complex number multiplication is associative. The identity element is 1; the inverse ofe2πitise-2πit.

(b) To see thatfis a homomorphism, note that f(s+t) =e2πi(s+t)=e2πise2πit=f(s)f(t). 5 From the representation of elements ofSase2πit, I have imf=S1.

The kernel offis

kerf={t?R|e2πit= 1}. Usinge2πit= cos(2πt) +isin(2πt), you can see that kerf=Z. Example.(Kernel, image, and inverse image)f:Z8→Z12is defined by f(x) = 3x(mod 12). Take for granted thatfis a group map. Find kerf, imf, andf-1(H), whereHis the subgroup{0,6} ofZ12. The kernel consists of elements ofZ8whichftakes to 0. Since 0 "is" 12 inZ12, and sincefmultiplies inputs by 3, I"ll get multiples of 12 out if I feed multiples of4 in: f(0) = 0, f(4) = 0.

Hence, kerf={0,4}.

imfconsists of the set of outputs off. Sincefmultiplies its inputs by 3, the outputs are the multiples

of 3: imf={0,3,6,9}. Finally,f-1({0,6}) consists of elements ofZ8which are mapped byfto either 0 or 6. So you need to

find the elements in{0,1,2,3,4,5,6,7}which give 0 or 6 when multiplied by 3. Obviously, an "odd" input

will give an "odd" output, and I already know 0 and 4 are mappedbyfto 0, so I just try 2 and 6: f(2) = 6, f(6) = 6.

Hence,f-1({0,6}) ={0,2,4,6}.

Definition.LetGandHbe groups. AnisomorphismfromGtoHis a bijective homomorphism f:G→H. If there is an isomorphismf:G→H,GandHareisomorphic; notation:G≈H. Remarks.1. To say that two groups are isomorphic is to say that they arethe sameas groups. The

elements of the two groups and the group operations may be different, but the two groups have the same

structure. This means that if one has a certain group-theoretic property, the other will as well.

What is agroup-theoretic property? Well, it"s a bit circular: a group-theoretic property is a property

preserved by isomorphism. For this to be a useful concept, I"ll have to provide specific examples of properties

that you can check.

2. Some older books define an isomorphism fromGtoHto be an injective homomorphismf:G→H.

That is,fneed not mapGontoH. One then saysGandHare isomorphic if there is an isomorphism from GontoH. Unfortunately, one then has the odd situation that there may be an isomorphism fromGtoH, yetGandHmay not be isomorphic! I"ll always use the wordisomorphismto mean a bijective map. Here is an easy way to tell that a group map is an isomorphism.

Lemma.A group mapf:G→His an isomorphism if and only if it is invertible. In this case,f-1is also

a homomorphism, hence an isomorphism.

Proof.The first statement is trivial, since a map of sets is bijective if and only if it has an inverse.

Now suppose thatf:G→His an isomorphism. I must show the inversef-1:H→Gis a homomorphism. Letx,y?H. I need to show that f -1(xy) =f-1(x)f-1(y). 6 Sincef:G→His onto, there existx,y?Gsuch thatf(x) =xandf(y) =y. Then f -1(xy) =f-1(f(x)f(y)) =f-1(f(xy)) =xy=f-1(x)f-1(y).

Therefore,f-1is a homomorphism.

Sincef-1is invertible - its inverse isf- it is an isomorphism by the first part of the lemma. Example.(A group isomorphism) Show that the exponential map exp : (R,+)→(R+,·) given by exp(x) =exis a group isomorphism. I showed earlier that exp and the natural log function ln :R+→Rare group maps. They"re also inverses: ln(exp(x)) = lnex=xforx?R. exp(lnx) =elnx=xforx?R+. By the lemma, exp is an isomorphism (as is ln). The groups (R,+) andR+are isomorphic. Example.(A group isomorphism on the integers mod 2) Consider the setG={-1,1}. MakeG into a group using multiplication as the group operation. Show thatGis isomorphic toZ2.

Define a mapf:Z2→Gby

f(0) = 1, f(1) =-1.

Clearly,fis invertible: Its inverse is

f -1(1) = 0, f-1(-1) = 1. I"ll showfis a homomorphism, hence an isomorphism, by simply checkingcases: abf(a+b)f(a)f(b)

0011·1 = 1

01-11·(-1) =-1

10-1(-1)·1 =-1

111(-1)·(-1) = 1

The brute force approach above can be used to construct an isomorphism fromZ2to any group of order

2.There is only one group of order2, up to isomorphism.

Here are some examples of "group-theoretic properties". Thus, if two groups are isomorphic and one of

the groups has such a property, the other must as well. On the other hand, if one of two groups has one of

these properties but the other group does not, then the two groups cannot be isomorphic. Proposition.SupposeGandHare isomorphic groups. IfGis abelian, so isH. Proof.Letx,y?H. I must show thatxy=yx. Sincefis surjective, there existx?,y??Gsuch that f(x?) =xandf(y?) =y. Then xy=f(x?)f(y?) =f(x?y?) (fis a group map) =f(y?x?) (Gis abelian) =f(y?)f(x?) (fis a group map) =yx 7

Therefore,His abelian.

Example.(Non-isomorphic groups)D3is the group of symmetries of an equilateral triangle.D3and Z

6are both groups of order 6. Why aren"t they isomorphic?

Z

6is abelian, whileS3is nonabelian. Therefore,S3andZ6are not isomorphic.

Proposition.SupposeGandHare isomorphic groups. IfGis finite, so isH. IfGis infinite, so isH. In other words, isomorphic groups have the same cardinality. Proof.SinceGandHare isomorphic, there is a bijective (group map)f:G→H. Sincefis bijective, |G|=|H|(since that"s what it means for two sets to have the same cardinality). Example.(Groups of different cardinalities aren"t isomorphic) Why can"tZandRbe isomorphic?

Both groups are infinite, but the integers are countable, while the reals are uncountable. Since they

don"t have the same cardinality, they can"t be isomorphic. Proposition.SupposeGandHare isomorphic groups. IfGhas a subgroupKof order 42, so doesH. Proof.IfK < Gand|K|= 42, thenf(K)< Hand (sincefmapsKbijectively ontof(K))|f(K)|= 42. Obviously, there"s nothing special about "42". IfGhas a subgroup of order 117, so doesH. IfGhas a

subgroup of order 91, so doesH. And so on. This proposition is not very useful as is, and is just here to

show you a property shared by isomorphic groups. There are clearly infinitely many properties that will be shared by isomorphic groups. However, the

earlier examples show that some properties arenotshared by isomorphic groups. For example, the elements

of one group may be letters, while the elements of the other are numbers. "Having the same kind of elements"

isnota group-theoretic property. Likewise, the operation in onegroup may be addition of numbers, while

the operation in the other could be composition of functions. "Having the same kind of binary operation"

isnota group-theoretic property. Example.(Showing groups aren"t isomorphic by considering orders of elements) (a) Show thatZ2×Z2andZ4arenotisomorphic. (b) Show thatZ2×Z2×Z2,Z2×Z4, andZ8are not isomorphic.

(a) Both groups have 4 elements; however, every element ofZ2×Z2has order 1 or 2. If (x,y)?Z2×Z2,

then

2·(x,y) = (2x,2y) = (0,0).

Therefore, the order of (x,y) divides 2, and the only positive divisors of 2 are 1 and 2. On the other hand,Z4has two elements of order 4 (namely 1 and 3). Having different numbers of

elements of a given order is a group property. Since these groups differ in this respect, they aren"t isomorphic.

(b)Z2×Z2×Z2,Z2×Z4, andZ8are all abelian groups of order 8. However, their elements have different

orders. 8 Every element ofZ2×Z2×Z2has order 1 or 2. For if (x,y,z)?Z2×Z2×Z2, then

2·(x,y,z) = (2x,2y,2z) = (0,0,0).

Therefore, the order of (x,y,z) divides 2, and the only positive divisors of 2 are 1 and 2. Every element ofZ2×Z4has order 1, 2, or 4. For if (x,y)?Z2×Z4, then

4·(x,y) = (4x,4y) = (0,0).

Therefore, the order of (x,y) divides 4, and the only positive divisors of 2 are 1, 2, and 4.Note that

(0,1) is an element of order 4. This means thatZ2×Z4can"t be isomorphic toZ2×Z2×Z2, since the latter

has no elements of order 4. Z

8has elements of order 8. (1 has order 8, for example.) Therefore, it can"t be isomorphic toZ2×Z2×Z2

or toZ2×Z4, since these two groups have no elements of order 8.

Therefore, the three groups aren"t isomorphic.

c?2018 by Bruce Ikenaga9quotesdbs_dbs28.pdfusesText_34
[PDF] base de im(f) matrice

[PDF] base de numération cours

[PDF] numération de position exercices

[PDF] exercice corrigé conversion binaire decimal hexadecimal octal

[PDF] exercice base crpe

[PDF] conversion de bases

[PDF] matrice associée ? une application linéaire

[PDF] matrice d'une application linéaire exemple

[PDF] matrice et application linéaire pdf

[PDF] exercices corrigés d'espace vectoriel

[PDF] déterminer une base d'un sous espace vectoriel

[PDF] montrer que c'est une base

[PDF] dimension dun espace vectoriel exercice corrigé

[PDF] cardinal espace vectoriel

[PDF] théorème de la base incomplète démonstration