[PDF] Exercices de mathématiques - Exo7





Previous PDF Next PDF



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Solution . (1) Le produit de deux nombres pairs est-il pair? Soit P = {2k/k ∈ Z} l' 



Algèbre partie 2 EXERCICES

1 февр. 2019 г. Résolution d'équations (3e niveau : avec fractions). 11. Que vaut y ? a). 8 y. + 4 = 13.



ALGÈBRE Cours et Exercices Première Année LMD

− f(x)=0 n'admet pas de solution . - Sur R+



Institut Galilée Cours dalgèbre linéaire

sur. R. En effet f(2 × 1) = f(2) = 8 mais 2f(1) = 2 = 8. 1. François Liret et Dominique Martinais. Algèbre 1re année - Cours et exercices avec solutions.



[PDF] Algèbre - Exo7 - Cours de mathématiques

Cette partie se termine par l'étude d'une première structure algébrique avec la notion de groupe. exercices. 1. Soit P(X) = 3X3 −2



Algèbre

Exercices sur les équations Correction des exercices d'algèbre ..................................................................................36. Page 4 ...



Algèbre et Analyse Recueil dExercices Corrigés

8 мар. 2018 г. La troi- sième partie est dédiée aux exercices portant sur le calcul intégral et aux équations différentielles. A la toute fin de ce recueil



Exercices Corrigés Initiation aux Base de données

Chapitre 1 : Algèbre relationnelle On considère la relation R (A B



Création et utilisation datlas anatomiques numériques pour la

Algèbre première année : Cours et exercices avec solutions. DU-. NOD (2003). David C. Lay. Algèbre linéaire : Théorie Exercices & Applications. de boeck 



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

Ces deux références proposent un cours complété d'exercices avec solutions la sec- onde référence couvre une partie des notions abordées dans ce cours. § 1 



Cours dAlgèbre I et II avec Exercices CorrigésOM DE VOTRE

Solution . (1) Le produit de deux nombres pairs est-il pair? Soit P = {2k/k ? Z} l' 



Algèbre - Cours de première année

activement par vous-même des exercices sans regarder les solutions. avec un théorème fondamental de l'algèbre : « Tout polynôme de degré n admet n ...



ANALYSE MATRICIELLE ET ALGÈBRE LINÉAIRE APPLIQUÉE

I. Les matrices et abrégé d'algèbre linéaire Ces deux références proposent un cours complété d'exercices avec solutions la sec-.



ALGÈBRE Cours et Exercices Première Année LMD

La partie Solutions des exercices proposés que l'étudiant pourra n et m pairs tous les deux ce qui est en contradiction avec le fait.



Exercices dAlgèbre

Exercices d'Algèbre. Solutions proposées par C. BAJARD et S. CHARLES Un polynôme constant forme donc un système lié avec sa dérivée.



ALGÈBRE

29 oct. 2016 EXERCICES CORRIGÉS. ALGÈBRE. NICOLAS BASBOIS. PIERRE ABBRUGIATI ... guidé avec sagesse alors que je débutais dans l'enseignement en classe ...



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Puis calculer A-1. Exercice 8 – Appliquer avec précision aux matrices M et N suivantes l'algorithme du cours qui détermine si une matrice est inversible et 



Exercices de mathématiques - Exo7

Commencer par trouver une solution particulière P0 avec l'une des méthode toutes les solutions du problème. ... Indication pour l'exercice 10 ?.



Untitled

ALGÈBRE. EXERCICES AVEC SOLUTIONS. 1988 200 pages. COURS DE MATHÉMATIQUES SPÉCIALES. Classes Préparatoires. Enseignement supérieur 1er cycle. Volume 1.



Exercices de mathématiques - Exo7

Correction ?. [005278]. Exercice 246 ***. Combinaisons avec répétitions. Montrer que le nombre de solutions en nombres entiers xi ? 0 de l'équation.

Exo7

Polynômes

Corrections de Léa Blanc-Centi.

1 Opérations sur les polynômes

Exercice 1Trouver le polynômePde degré inférieur ou égal à 3 tel que :

P(0) =1 etP(1) =0 etP(1) =2 etP(2) =4:

Exercice 21.Ef fectuerla di visioneuclidienne de AparB: (a)A=3X5+4X2+1;B=X2+2X+3 (b)A=3X5+2X4X2+1;B=X3+X+2 (c)A=X4X3+X2;B=X22X+4 (d)A=X57X4X29X+9;B=X25X+4 2.

Ef fectuerla di visionselon les puissances croissantes de AparBà l"ordrek(c"est-à-dire tel que le reste

soit divisible parXk+1) : (a)A=12X+X3+X4;B=1+2X+X2;k=2 (b)A=1+X32X4+X6;B=1+X2+X3;k=4 À quelle condition sura;b;c2Rle polynômeX4+aX2+bX+cest-il divisible parX2+X+1 ? 1. Déterminer les pgcd des polynômes sui vants: (a)X3X2X2 etX52X4+X2X2 (b)X4+X32X+1 etX3+X+1 (c)X5+3X4+X3+X2+3X+1 etX4+2X3+X+2 (d)nXn+1(n+1)Xn+1 etXnnX+n1 (n2N) 1

2.Calculer le pgcd Ddes polynômesAetBci-dessous. Trouver des polynômesUetVtels queAU+BV=

D. (a)A=X5+3X4+2X3X23X2 etB=X4+2X3+2X2+7X+6 (b)A=X62X5+2X43X3+3X22X etB=X42X3+X2X+1 1.

Montrer que si AetBsont deux polynômes à coefficients dansQ, alors le quotient et le reste de la division

euclidienne deAparB, ainsi que pgcd(A;B), sont aussi à coefficients dansQ. 2. Soit a;b;c2Cdistincts, et 0F actoriserles polynômes sui vants: a)X2+(3i1)X2i b)X3+(4+i)X2+(52i)X+23i Pour quelles valeurs deale polynôme(X+1)7X7aadmet-il une racine multiple réelle? Chercher tous les polynômesPtels queP+1 soit divisible par(X1)4etP1 par(X+1)4.

Indications.Commencer par trouver une solution particulièreP0avec l"une des méthode suivantes :

1. à partir de la relation de Bézout entre (X1)4et(X+1)4; 2. en considérant le polynôme déri véP00et en cherchant un polynôme de degré minimal.

Montrer quePconvient si et seulement si le polynômePP0est divisible par(X1)4(X+1)4, et en déduire

toutes les solutions du problème. Quels sont les polynômesP2C[X]tels queP0diviseP? 2

Exercice 10

Trouver tous les polynômesPqui vérifient la relation

P(X2) =P(X)P(X+1)

Soitn2N. Montrer qu"il existe un uniqueP2C[X]tel que 8z2CP z+1z =zn+1z n

Montrer alors que toutes les racines dePsont réelles, simples, et appartiennent à l"intervalle[2;2].

1. Soit P=Xn+an1Xn1++a1X+a0un polynôme de degrén>1 à coefficients dansZ. Démontrer que siPadmet une racine dansZ, alors celle-ci divisea0. 2. Les polynômes X3X2109X11 etX10+X5+1 ont-ils des racines dansZ? Soienta0;:::;andes réels deux à deux distincts. Pour touti=0;:::;n, on pose L i(X) =Õ 16j6n j6=iXaja iaj (lesLisont appeléspolynômes interpolateurs de Lagrange). CalculerLi(aj).

Soientb0;:::;bndes réels fixés. Montrer queP(X) =åni=0biLi(X)est l"unique polynôme de degré inférieur ou

égal ànqui vérifie:

P(aj) =bjpour toutj=0;:::;n:

Application.Trouver le polynômePde degré inférieur ou égal à 3 tel que

P(0) =1 etP(1) =0 etP(1) =2 etP(2) =4:

Indication pourl"exer cice4 NLe calcul du pgcd se fait par l"algorithme d"Euclide, et la "remontée" de l"algorithme permet d"obtenirUetV.Indication pourl"exer cice5 NCalculer pgcd(P;P0).Indication pourl"exer cice9 NSiP=P0QavecP6=0, regarder le degré deQ.Indication pourl"exer cice10 NMontrer que siPest un polynôme non constant vérifiant la relation, alors ses seules racines possibles sont 0 et

1.Indication pourl"exer cice11 NPour l"existence, preuve par récurrence surn. Pour les racines, montrer queP(x) =2cos(narccos(x=2)).4

Correction del"exer cice1 NOn cherchePsous la formeP(X) =aX3+bX2+cX+d, ce qui donne le système linéaire suivant à résoudre:

8>>< >:d=1 a+b+c+d=0 a+bc+d=2

8a+4b+2c+d=4

Après calculs, on trouve une unique solution :a=32 ,b=2,c=12 ,d=1 c"est-à-dire

P(X) =32

X32X212

X+1:Correction del"exer cice2 N1.(a) 3 X5+4X2+1= (X2+2X+3)(3X36X2+3X+16)41X47 (b)

3 X5+2X4X2+1= (X3+X+2)(3X2+2X3)9X2X+7

(c)X4X3+X2= (X22X+4)(X2+X2)7X+6 (d)X57X4X29X+9 = (X25X+4)(X32X214X63)268X+261 2. (a)

1 2X+X3+X4= (1+2X+X2)(14X+7X2)+X3(96X)

(b)

1 +X32X4+X6= (1+X2+X3)(1X2X4)+X5(1+2X+X2)Correction del"exer cice3 NLa division euclidienne deA=X4+aX2+bX+cparB=X2+X+1 donne

X

4+aX2+bX+c= (X2+X+1)(X2X+a)+(ba+1)X+ca

OrAest divisible parBsi et seulement si le resteR= (ba+1)X+caest le polynôme nul, c"est-à-dire si

et seulement siba+1=0 etca=0.Correction del"exer cice4 N1.L "algorithmed"Euclide permet de calculer le pgcd par une suite de di visionseuclidiennes.

(a)X52X4+X2X2= (X3X2X2)(X2X)+2X23X2 puisX3X2X2= (2X23X2)(12 X+14 )+34 X32 puis 2X23X2= (34 X32 )(83 X+43 Le pgcd est le dernier reste non nul, divisé par son coefficient dominant: pgcd(X3X2X2;X52X4+X2X2) =X2 (b)X4+X32X+1= (X3+X+1)(X+1)X24X puisX3+X+1= (X24X)(X+4)+17X+1 donc pgcd(X4+X32X+1;X3+X+1) =pgcd(X24X;17X+1) =1 carX24Xet 17X+1 n"ont pas de racine (même complexe) commune. 5 (c)X5+3X4+X3+X2+3X+1= (X4+2X3+X+2)(X+1)X31 puisX4+2X3+X+2= (X31)(X2)+2X3+2 pgcd(X5+3X4+X3+X2+3X+1;X4+2X3+X+2) =X3+1 (d)nXn+1(n+1)Xn+1 = (XnnX+n1)(nX(n+1))+n2(X1)2 Sin=1 alorsXnnX+n1=0 et le pgcd vaut(X1)2. On constate que 1 est racine de X nnX+n1, et on trouveXnnX+n1= (X1)(Xn1+Xn2++X2+X(n1)). Sin>2: 1 est racine deXn1+Xn2++X2+X(n1)et on trouve X n1+Xn2++X2+X(n1) = (X1)(Xn2+2Xn3++(n1)X2+nX+(n+1)), donc finalement(X1)2divise X nnX+n1 (on pourrait aussi remarquer que 1 est racine de multiplicité au moins deux de X nnX+n1, puisqu"il est racine de ce polynôme et de sa dérivée). Ainsi sin>2;pgcd(nXn+1(n+1)Xn+1;XnnX+n1) = (X1)2 2. (a) A=X5+3X4+2X3X23X2 etB=X4+2X3+2X2+7X+6 doncA=BQ1+R1avecQ1=X+1,R1=2X310X216X8 puisB=R1Q2+R2avecQ2=12 X+32 etR2=9X2+27X+18 et enfinR1=R2Q3avecQ3=29 X49

DoncD=X2+3X+2, et on obtient

9D=BR1Q2=B(ABQ1)Q2=AQ2+B(1+Q1Q2)

soit U=19 (Q2) =118 X16 V=19 (1+Q1Q2) =118 X2+19 X+518 (b)

On a A=BQ1+R1avecQ1=X2+1,R1=X2X1

puisB=R1Q2+R2avecQ2=X2X+1 etR2=X+2 et enfinR1=R2Q3+R3avecQ3=X1 etR3=1

DoncD=1, et on obtient

1=R1R2Q3=R1(BR1Q2)Q3=R1(1+Q2Q3)BQ3

= (ABQ1)(1+Q2Q3)BQ3 =A(1+Q2Q3)B(Q1(1+Q2Q3)+Q3) soit

U=1+Q2Q3=X3

V=Q1(1+Q2Q3)Q3=1+X+X3+X5Correction del"exer cice5 N1.Lorsqu"on ef fectuela di visioneuclidienne A=BQ+R, les coefficients deQsont obtenus par des

opérations élémentaires (multiplication, division, addition) à partir des coefficients deAetB: ils restent

donc dansQ. De plus,R=ABQest alors encore à coefficients rationnels. Alorspgcd(A;B)=pgcd(B;R)etpourl"obtenir, onfaitladivisioneuclidiennedeBparR(dontlequotient

et le reste sont encore à coefficients dansQ), puis on recommence... Le pgcd est le dernier reste non nul,

c"est donc encore un polynôme à coefficients rationnels. 6

2.Notons P1=pgcd(P;P0): commePest à coefficients rationnels,P0aussi et doncP1aussi. OrP1(X) =

(Xa)p1(Xb)q1(Xc)r1. En itérant le processus, on obtient quePr1(X) = (Xc)est à coefficients rationnels, doncc2Q. On remonte alors les étapes:Pq1(X) = (Xb)(Xc)rq+1est à coefficients rationnels, etXbaussi en tant que quotient dePq1par le polynôme à coefficients rationnels(Xc)rq+1, doncb2Q. De

même, en considérantPp1, on obtienta2Q.Correction del"exer cice6 N1.(a) X33= (X31=3)(X2+31=3X+32=3)oùX2+31=3X+32=3est irréductible surR. On cherche

ses racines complexes pour obtenir la factorisation surC: X

33= (X31=3)(X+12

31=3i2

35=6)(X+12

31=3+i2

35=6)
(b) P assonsà X121.z=reiqvérifiez12=1 si et seulement sir=1 et 12q0[2p], on obtient donc comme racines complexes leseikp=6(k=0;:::;11), parmi lesquelles il y en a deux réelles (1 et 1) et cinq couples de racines complexes conjuguées (eip=6ete11ip=6,e2ip=6ete10ip=6,e3ip=6ete9ip=6, e

4ip=6ete8ip=6,e5ip=6ete7ip=6), d"où la factorisation surC[X]:

X

121= (X1)(X+1)(Xeip=6)(Xe11ip=6)(Xe2ip=6)

(Xe10ip=6)(Xe3ip=6)(Xe9ip=6)(Xe4ip=6) (Xe8ip=6)(Xe5ip=6)(Xe7ip=6) Comme(Xeiq)(Xeiq) = (X22cos(q)X+1), on en déduit la factorisation dansR[X]: X

121= (X1)(X+1)(X22cos(p=6)X+1)

(X22cos(2p=6)X+1)(X22cos(3p=6)X+1) (X22cos(4p=6)X+1)(X22cos(5p=6)X+1) = (X1)(X+1)(X2p3X+1) (X2X+1)(X2+1)(X2+X+1)(X2+p3X+1) (c) Pour X6+1,z=reiqvérifiez6=1 si et seulement sir=1 et 6qp[2p], on obtient donc comme racines complexes lesei(p+2kp)=6(k=0;:::;5). D"où la factorisation dansC[X]: X

6+1= (Xeip=6)(Xe3ip=6)(Xe5ip=6)(Xe7ip=6)

(Xe9ip=6)(Xe11ip=6) Pour obtenir la factorisation dansR[X], on regroupe les paires de racines complexes conjuguées : X

6+1= (X2+1)(X2p3X+1)(X2+p3X+1)

(d)X9+X6+X3+1=P(X3)oùP(X) =X3+X2+X+1=X41X1: les racines dePsont donc les trois racines quatrièmes de l"unité différentes de 1 (i,i,1) et X

9+X6+X3+1=P(X3)

= (X3+1)(X3i)(X3+i) = (X3+1)(X6+1) On sait déjà factoriserX6+1, il reste donc à factoriser le polynômeX3+1= (X+1)(X2X+1), oùX2X+1 n"a pas de racine réelle. Donc X

9+X6+X3+1= (X+1)(X2X+1)(X2+1)

(X2p3X+1)(X2+p3X+1) Pour la factorisation surC: les racines deX2X+1 sonteip=3ete5ip=3, ce qui donne X

9+X6+X3+1= (X+1)(Xeip=3)(Xe5ip=3)

(Xeip=6)(Xe3ip=6)(Xe5ip=6)quotesdbs_dbs48.pdfusesText_48
[PDF] algèbre exercices avec solutions pdf

[PDF] algebre generale exercices corrigés pdf

[PDF] algebre generale mp

[PDF] algèbre linéaire cours exercices corrigés pdf

[PDF] algèbre linéaire espace vectoriel exercice corrigé

[PDF] algèbre linéaire exo7

[PDF] algèbre linéaire pour les nuls

[PDF] algèbre linéaire: matrice

[PDF] algebre pdf

[PDF] algebre s2 economie exercices corrigés pdf

[PDF] algebre s2 economie pdf

[PDF] algebre s2 exercices corrigés pdf

[PDF] algérie 1

[PDF] algérie ancienne colonie française

[PDF] algerie ancienne photos