[PDF] Gravity 3 - Gravitational Potential and the Geoid





Previous PDF Next PDF



Datums Heights and Geodesy

-geoid height is ellipsoid height from specific ellipsoid to geoid. -types of geoid heights: gravimetric versus hybrid. -definition of ellipsoidal datums (a 



A conventional value for the geoid reference potential W

Gauss-Listing definition of the geoid. ? Usual convention: the geoid is the equipotential surface of the Earth's gravity field that best fits (in a 



Franz Barthelmes - Definition of Functionals of the Geopotential and

If geophysicists or geologists speak about gravity anomalies they usually have in mind this type of anomalies. 3 Approximation and Calculation. 3.1 The Geoid.



The geoid: Definition and determination

The Geoid—Definition. We start by characterizing the gravity field of the earth by a set of equipotential surfaces. These surfaces.



Definition of the relativistic geoid in terms of isochronometric surfaces

06-Jun-2017 Such a redshift potential exists in any stationary spacetime. Therefore our geoid is well defined for any rigidly rotating object with constant ...



Geoid versus quasigeoid: a case of physics versus geometry

If we had the gravity anomalies. ?g on the geoid (at the sea level) then we could use Stokes's formulation to compute the geoidal height N (already defined) 



Temporal changes to the geoid and vertical datum

27-May-2016 “…the most accepted definition of the geoid is understood to be the equipotential surface that coincides (in the sense of the least squares).



Fundamentals of Geodesy Earth Coordinate system Geoid

Geodesy - the shape of the earth and definition of earth datum gravity field



A contemporary perspective of geoid structure

21-Dec-2010 Analytical continuation • geoid • least squares collocation • physical ... Modern geoid definition and determination have developed re-.



Gravity 3 - Gravitational Potential and the Geoid

In this vector form we can think of gravitational acceleration in directions other than toward or away from the mass. Note that r is defined as pointing.



Géoïde - Wikipédia

Un géoïde est une surface équipotentielle de référence du champ de pesanteur terrestre Un géoïde est déterminé à terre par nivellement géométrique en 



Définition Géoïde Futura Planète

Le géoïde est une surface équipotentielle du champ de pesanteur coïncidant au mieux avec le niveau moyen des océans et qui se prolonge sous les continents



Définition de GÉOÏDE

GÉOÏDE subst masc Surface de la Terre en géodésie ou surface moyenne de la Terre proche du niveau des mers déterminée par convention Clairaut [ 



[PDF] le géoïde - Horizon IRD

Le géoïde est une surface équipotentielle du champ de pesanteur En théorie la forme du géoïde et l'ensemble des valeurs de la gravité forment deux 



[PDF] Géoïde et anomalies - WordPresscom

Un géoïde est une surface équipotentielle de pesanteur proche du niveau moyen des mers Comme l'orientation du champ de pesanteur varie à la surface de la Terre 



Comment déterminer le géoïde au-dessus des continents

5 avr 2001 · Par définition le géoïde représente la surface équipotentielle du champ de gravité de la Terre qui coïncide avec le niveau moyen des océans 



Définition de géoïde Dictionnaire français

GÉOÏDE subst masc Surface de la Terre en géodésie ou surface moyenne de la Terre proche du niveau des mers déterminée par convention



[PDF] LE GEOIDE : UNE EQUIPOTENTIELLE DE PESANTEUR 1

En toute première approximation le géoïde est une sphère en deuxième approximation il s'agit d'un ellipsoïde que l'on appelle l'"ellipsoïde de référence" en 



[PDF] Pesanteur et géoïde - Laboratoire de Géologie de lENS

Par définition le moment d'inertie d'une masse ponctuelle m en rotation autour d'un axe est I = md2 où r est la distance de la masse à l'axe de rotation Cette



[PDF] Géoïde & Nivellement - Association francophone de topographie

GÉOÏDE Par définition le géoïde est la surface équipotentielle de la pesanteur qui coïncide au mieux avec le "niveau moyen" des mers [4]

  • Pourquoi Dit-on que la terre est un géoïde ?

    L'une de ces surfaces est choisie comme référence de l'altitude, c'est celle qui coïncide avec le niveau moyen des océans. On l'appelle le géo?.
  • Comment déterminer le géoïde ?

    Pour déterminer le géo? continental, il faut connaître l'altitude et la localisation du point de mesure ainsi que la valeur et la direction locales de la gravité. Une fois que l'on connaît la gravité et l'altitude, on peut revenir au potentiel de gravité par une transformation mathématique.
  • Pourquoi le géoïde ?

    Le géo? étant une surface équipotentielle de pesanteur particulière, il sert de zéro de référence pour les mesures précises d'altitude. Les applications sont nombreuses : hydrologie (étude des bassins versants), aéronautique, balistique.
  • Un ellipso? est symétrique autour de trois axes mutuellement perpendiculaires qui se coupent au centre». Définition du géo? : «Surface équipotentielle du champ de pesanteur, choisie pour être voisine du niveau moyen des mers».

Gravity 3

Gravity 3

Gravitational Potential and the Geoid

Chuck Connor, Laura Connor

Potential Fields Geophysics: Week 2

Gravity 3

Gravity 3Objectives for Week 1

Gravity as a vector

Gravitational

Potential

The GeoidGravity 3

Gravity 3Gravity as a vector

We can write Newton's law for gravity in a vector

form to account for the magnitude and direction of the gravity eld: ~g=GmEr 2~r where: ~gis the gravitational acceleration m

Eis the Earth's mass.

ris distance from the center of mass (e.g., the Earth). ~ris a unit vector pointed away from the center of mass

Gis the gravitational constant (m3kg1s2)

In this vector form we can think of gravitational

acceleration in directions other than toward or away from the mass. Note that~ris dened as pointing awayfrom the center of mass and in the direction of increasingr, hence the minus sign which could be ignored when we were only concerned with the magnitude ofg: g=j~gj=GmEr 2 At right the \z" component of gravity is calculated for pointOdue to a mass at pointP.Examples r

1~rΘ

P(x1;z1)O(x0;z0)zx

g r=GmPr 21~r
~r=z0z1r 1 g z=GmPr 21z
0z1r 1 g z=GmP(z1z0)r

31Gravity 3

Gravity 3Gravitational potential

The gravitational potential,U, is a

scalar eld U=Z R

1~gd~r

Z R 1GMr 2dr =GMR

The signs are tricky. Note~rd~r=dr,

that is,~randd~rare of opposite sign (point in opposite directions). Prove to yourself that the MKS unit of gravitational potential is Joules/kg. Gravitational potential is the potential energy per unit mass.-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

1 Re2 Re3 Re4 Re5 Re

-10 -5 0 5 10

Gravitational Potential, U (J x 10

8

Gravitational acceleration, g (m s

-2

Radial Distance, in Earth Radii (Re)U(x)

g(x)Unlike gravitational acceleration, gravitational potential decreases closer to the surface of the Earth. This means negative work is done by an object falling toward the surface. Positive work is done moving an object away from the surface (it is easier to fall o a cli than to climb up one!). BothUandgconverge to zero at large distances.Gravity is a potential eld

The integral relationship between the vector of gravitational acceleration and the scalar gravitational

potential makes gravity a \potential eld". Gravitational acceleration is the gradient of the potential:

~g=GMr

2~r=@@~rGMr

=@@~r

U=gradU=rUGravity 3

Gravity 3The gradient of the potential

r

1~rΘ

P(x1;z1)O(x0;z0)zxLet's return to the example

using the point massmPat pointP. The scalar gravitational potential at point

Ois the work required to move

an object from innity toO.

The potential is related to

gravitational acceleration by the integral shown on the previous slide. The next question is: how doesUvary across the area aroundP, in this case in the xzplane? We can think of this as the change ofUin thex orzdirections, that is,@U=@x and@U=@z.Use the chain rule to relate the partial derivative in therdirection to the derivative in thexandzdirections: @U@z =@U@r 1@r 1@z =Gmpr

21@r1@z

@r 1@z =12 h (z1z0)2+ (x1x0)2i12

2(z1z0)

@U@z =GMr

21z1z0r

1=GmP(z0z1)r

31
Comparing this to the answer from two slides back: @U@z =gz @U@x =gxGravity can vary on an equipotential surface A surface along whichUis constant is an equipotential surface. No work is done against gravity moving on an equipotential surface, but gravity can vary along an equipotential surface because@U@z , wherezis dened as vertical, need not be constant.Gravity 3 Gravity 3Variation in gravity on an equipotential surface

We have already seen that for a \point" mass, or

outside a homogeneous sphere, the potential varies with radial distance only: U=GMR So, @U@z =constant on such an equipotential surface (gravity is constant at a given value ofR). The actual Earth is not homogeneous. Earth has mass anomalies,

Uis not constant at a givenR, and@U@z

6=constant,

so gravity varies along an equipotential surface for the Earth.The variation in an equipotential surface for the Earth can be thought of in terms of variation of its height.

Since potential energy,U=ghon an equipotential

surface, andUis constant by denition, any change in gravity corresponds to a change in height,h. This change in height of the equipotential surface has to be referenced to something. For Earth, the reference ellipsoid is the best-t ellipsoid to the gure of the Earth at mean sea-level. The geoid is the equipotential surface that varies around this reference ellipsoid. The height of the geoid is the dierence in height, or geoid undulation, from the reference ellipsoid at any given location. The height of the geoid, and the value of gravity on the geoid, varies because the distribution of mass inside the Earth is not uniform. Vertical is dened as normal to the geoid, so the orientation of vertical also varies with respect to the reference ellipsoid. At sea, the surface of the ocean corresponds to the geoid. Changes in mass distribution within the Earth cause changes in the height of the geoid, so there are literally changes in the height of the sea from place-to-place, with respect to the reference ellipsoid. Most satellites orbit on a equipotential surface, so their height (say distance from the surface of the reference ellipsoid) also undulates on an equipotential surface mimicking the shape of the geoid.Gravity 3

Gravity 3The geoid

The Earth's geoid as mapped from GRACE data and shown in terms of height above or below the reference

ellipsoid. As time goes on, the geoid has been mapped with greater and greater denition.Gravity 3 Gravity 3What sort of mass distribution causes a change in the Earth's geoid?Examples Consider a geoid anomaly of+50m on the order of 2000km in width. What sort of excess mass might

cause this geoid anomaly? Let's simplify the problem by considering the excess mass to be in the mantle and

of spherical shape. To raise the geoidh= 50m, the gravitational potential on an \undisturbed Earth" at

the surface must equal the potential at+50m once the excess mass is added: GMER

E=GMER

E+hGMexcessr

excess+h whereMEis the mass of the Earth,REis the radius of the Earth,Mexcessis the excess mass associated

with the geoid anomaly,rexcessis the depth to the center of the excess mass, andhis the height of the

geoid anomaly. There is one equation and two unknowns (the excess mass and the depth to the center of the

excess mass). If we assume the depth to the center of excess mass is 1000km, prove to yourself that the

excess mass creating the geoid height anomaly is aboutMexcess= 71018kg. If the excess mass is spherical, then: M excess=43 a3excess

whereais the radius of the spherical excess mass andexcessis its excess density (or density contrast with

the surrounding mantle). Ifa= 5105m thenexcess= 14kg m3. The mantle density on average at 1000km depth is on order of 4000kgm

3. Geoid anomalies of ten's of meters height and thousands of

kilometers width seem to be related to very small perturbations in this density, possibly associated with

changes in water content of the mantle, or other geochemical dierences, and temperature.Gravity 3

Gravity 3EOMA

Answer the following questions

using the diagram at right. As before, a point mass,mPis located atPand we are concerned with the gravity and gravitational potential at pointO due to the mass at pointP.r

1~rΘ

P(x1;z1)O(x0;z0)zx1Rewrite the equation for gravitational acceleration in thezdirection (gz) due to the mass at point

P, only in terms of the constantsGandmPand the variablesxandz(that is, eliminate the

variabler1from the equation).2Using the equation you derived in question 1, graph the change ingzwithxalong a prole across

the pointP. Assume values for the mass at the point and its depth.3Now consider the same problem in three dimensions, that isr21=x2+y2+z2. Assume that

U= 1=r1, sinceGMis constant. Show that:

r

2U=@2U@x

2+@2U@y

2+@2U@z

2= 0 This is Laplace's equation. It means that outside the mass, the gravity eld is conserved, so the eld varies in a systematic way. This fact is highly useful for calculating expected anomalies and for ltering gravity maps.Gravity 3quotesdbs_dbs41.pdfusesText_41
[PDF] geo ide

[PDF] geoide terrestre

[PDF] note de service respect des consignes

[PDF] géodésie cours

[PDF] pascal le cœur et la raison

[PDF] loi normale centrée réduite calculatrice casio

[PDF] loi normale ti 83 premium

[PDF] loi binomiale ti 83 plus

[PDF] norman rockwell paintings

[PDF] notation decimale en fraction

[PDF] montrer qu un nombre est decimal

[PDF] comment démontrer qu un nombre est décimal

[PDF] la liberté de parole norman rockwell

[PDF] qu'est ce qu'une fraction décimale

[PDF] notation décimale allo prof