[PDF] Temporal changes to the geoid and vertical datum





Previous PDF Next PDF



Datums Heights and Geodesy

-geoid height is ellipsoid height from specific ellipsoid to geoid. -types of geoid heights: gravimetric versus hybrid. -definition of ellipsoidal datums (a 



A conventional value for the geoid reference potential W

Gauss-Listing definition of the geoid. ? Usual convention: the geoid is the equipotential surface of the Earth's gravity field that best fits (in a 



Franz Barthelmes - Definition of Functionals of the Geopotential and

If geophysicists or geologists speak about gravity anomalies they usually have in mind this type of anomalies. 3 Approximation and Calculation. 3.1 The Geoid.



The geoid: Definition and determination

The Geoid—Definition. We start by characterizing the gravity field of the earth by a set of equipotential surfaces. These surfaces.



Definition of the relativistic geoid in terms of isochronometric surfaces

06-Jun-2017 Such a redshift potential exists in any stationary spacetime. Therefore our geoid is well defined for any rigidly rotating object with constant ...



Geoid versus quasigeoid: a case of physics versus geometry

If we had the gravity anomalies. ?g on the geoid (at the sea level) then we could use Stokes's formulation to compute the geoidal height N (already defined) 



Temporal changes to the geoid and vertical datum

27-May-2016 “…the most accepted definition of the geoid is understood to be the equipotential surface that coincides (in the sense of the least squares).



Fundamentals of Geodesy Earth Coordinate system Geoid

Geodesy - the shape of the earth and definition of earth datum gravity field



A contemporary perspective of geoid structure

21-Dec-2010 Analytical continuation • geoid • least squares collocation • physical ... Modern geoid definition and determination have developed re-.



Gravity 3 - Gravitational Potential and the Geoid

In this vector form we can think of gravitational acceleration in directions other than toward or away from the mass. Note that r is defined as pointing.



Géoïde - Wikipédia

Un géoïde est une surface équipotentielle de référence du champ de pesanteur terrestre Un géoïde est déterminé à terre par nivellement géométrique en 



Définition Géoïde Futura Planète

Le géoïde est une surface équipotentielle du champ de pesanteur coïncidant au mieux avec le niveau moyen des océans et qui se prolonge sous les continents



Définition de GÉOÏDE

GÉOÏDE subst masc Surface de la Terre en géodésie ou surface moyenne de la Terre proche du niveau des mers déterminée par convention Clairaut [ 



[PDF] le géoïde - Horizon IRD

Le géoïde est une surface équipotentielle du champ de pesanteur En théorie la forme du géoïde et l'ensemble des valeurs de la gravité forment deux 



[PDF] Géoïde et anomalies - WordPresscom

Un géoïde est une surface équipotentielle de pesanteur proche du niveau moyen des mers Comme l'orientation du champ de pesanteur varie à la surface de la Terre 



Comment déterminer le géoïde au-dessus des continents

5 avr 2001 · Par définition le géoïde représente la surface équipotentielle du champ de gravité de la Terre qui coïncide avec le niveau moyen des océans 



Définition de géoïde Dictionnaire français

GÉOÏDE subst masc Surface de la Terre en géodésie ou surface moyenne de la Terre proche du niveau des mers déterminée par convention



[PDF] LE GEOIDE : UNE EQUIPOTENTIELLE DE PESANTEUR 1

En toute première approximation le géoïde est une sphère en deuxième approximation il s'agit d'un ellipsoïde que l'on appelle l'"ellipsoïde de référence" en 



[PDF] Pesanteur et géoïde - Laboratoire de Géologie de lENS

Par définition le moment d'inertie d'une masse ponctuelle m en rotation autour d'un axe est I = md2 où r est la distance de la masse à l'axe de rotation Cette



[PDF] Géoïde & Nivellement - Association francophone de topographie

GÉOÏDE Par définition le géoïde est la surface équipotentielle de la pesanteur qui coïncide au mieux avec le "niveau moyen" des mers [4]

  • Pourquoi Dit-on que la terre est un géoïde ?

    L'une de ces surfaces est choisie comme référence de l'altitude, c'est celle qui coïncide avec le niveau moyen des océans. On l'appelle le géo?.
  • Comment déterminer le géoïde ?

    Pour déterminer le géo? continental, il faut connaître l'altitude et la localisation du point de mesure ainsi que la valeur et la direction locales de la gravité. Une fois que l'on connaît la gravité et l'altitude, on peut revenir au potentiel de gravité par une transformation mathématique.
  • Pourquoi le géoïde ?

    Le géo? étant une surface équipotentielle de pesanteur particulière, il sert de zéro de référence pour les mesures précises d'altitude. Les applications sont nombreuses : hydrologie (étude des bassins versants), aéronautique, balistique.
  • Un ellipso? est symétrique autour de trois axes mutuellement perpendiculaires qui se coupent au centre». Définition du géo? : «Surface équipotentielle du champ de pesanteur, choisie pour être voisine du niveau moyen des mers».

Temporal changes to the geoid

and vertical datum

Dru Smith

NSRS Modernization Manager

NOAA's National Geodetic Survey

Summarize the issue

•If "th e geoid" is to be the zero-height surface used in a future vertical datum, so that all orthometric heights refer to "the geoid"... •And if, "the geoid" changes... •Then heights change too. Therefore, NGS must know the changes to "the geoid" to properly serve up the new vertical datum to their customers.

May 27, 2016

2 "The geoid" •In quotes because: -It has no official IAG definition -Commonly used definitions cause some d isagreements when considering temporal changes

May 27, 2016

3

The closest thing to an IAG definition

From the Report of the Ad-hoc Group on an International Height Reference System (IHRS) (Ihde, et al, 2015): "...the most accepted definition of the geoid is understood to be the equipotential surface that coincides (in the sense of the least squares) with the worldwide mean ocean surface"* * Sounds an awful lot like the NGS definition in place since 1986....

May 27, 2016

4

Why does this matter?

•Because: -Masses move •And thus the shape of every W=constant surface is changing

Sea Level is changing

•And thus the particular W=constant surface which fits Se a Level changes as Sea Level itself changes.

May 27, 2016

5

Some assumptions

•Mass leaves the Earth very slowly -9

0,000 metric tons / year (?) of stratospheric ions and free electrons, etc

•Mass joins the Earth very slowly

40,000 metric tons / year (?) of "space dust"

Net change:

50,000 metric tons / year

-0.00000000000000083 % / year = negligible •g ~ G

M /R = 9.8 m/s

•If M loses 50,000 metric tons, g changes by: -0.000000000000000837 m/s (= 0.000000084 Gal)

Which we will call "negligible" for this lecture

May 27, 2016

2 2 2 6

Further Assumptions

•Assume mass quantity in the Earth system is effectively constant •Ma s s distributions in the Earth system are time dependent and some are large enough to be measurable -Secular •Shape chang e to every "W=constant" surface •Size c h ange to global mean sea level (aka "air/sea boundary") -Periodic -Episodic

May 27, 2016

7

Secular: Shape vs Size

May 27, 2016

This green surface has 2

properties at t0:

1)W=W0

2)Fits mean sea level

This red surface maintains 1

property at t1:

1)W=W0

2)

Fits mean sea level

(not guaranteed!)

This purple surface maintains 1

property at t1: 1)

W=W0 (not guaranteed!)

2)Fits mean sea level (not guaranteed!)

Mass moves around

(ice melts, rebound occurs) "Sea level rise" (the average air/sea boundary swells outward from the center of the Earth) "squeeze a balloon" "inflate a balloon" 8

Uses monthly

GRACE fields

from the

Center for

Space

Research at U

Texas.

Complete

through degree and order = 60. Fit to April, 2002

June, 2009.

Secular Change (shape) - Glacial

May 27, 2016

9

Secular Change (shape) - Glacial

10

May 27, 2016

Secular Change (shape) - Glacial

11

May 27, 2016

Secular Change (size) - Sea Level

12

May 27, 2016

Episodic Geoid Change (shape)

13

May 27, 2016

e.g. "earthquakes"

May 27, 2016 14

Seasonal/Periodic Change (shape)

Ramillien G et al. Geophys. J. Int. 2004;158:813-826

May 27, 2016 15

Seasonal/Periodic Change (shape)

Uses monthly

GRACE fields

from the Center for Space

Research at U

Texas. Complete

through degree and order = 60.

Fit to April, 2002

June, 2009.

Time for a thought experiment....

May 27, 2016

16

Let's introduce some rocky planet...

And now let's fill in its ocean basins with water...

And put some icecaps on the land...

Ignoring all other masses in the universe, and for now assuming this rock isn't spinning, this mix of rock, water and ice

generates a three

-dimensional field of gravitational potential. Such a field consists of an infinite number of non-intersecting

surfaces, one inside another, where each surface is defined as the locus of points where gravitational potential

is some constant value. Each such surface is called an "equipotential surface".

Let's show a handful of these surfaces...

Note that the separation between these surfaces is not fixed, but instead depends on where you are...

And because it is special, let's show that one equipotential surface which best fits to all of the ocean surfaces...

We'll call that red surface "the geoid"

And for the sake of completeness, let's introduce the ellipsoid which best fits the geoid... This diagram is too complicated for our purposes, so let's zoom in to one spot to continue.... Let's re-introduce this section of our rocky, watery, icy planet...

And note that the geoid does not actually

coincide with mean sea level, but fits it best only globally... And let's put in a few other equipotential surfaces to give context...

Let's also label our surfaces, so we can keep track of them. Gravity potential is often given the variable "W", and the

constant value of each equipotential surface will be given a subscript. Note that by tradition, W0 is given to

the geoid.

Note that we will make use of the

geodetic convention that gravity potential is a positive value

(the physics convention is for this value to be negative). And in our example, therefore, the numerical

relationship between all of these surfaces is:

Wa < Wb < Wc < W0 < Wd < We < Wf

Now, there are two primary reasons sea level is rising globally: thermal expansion and land ice melting (each contributing about ½ of the signal). Let's look at each one separately, and examine the effect on the equipotential surfaces, and the geoid in particular. W=W a W=W c W=W 0 W=W d W=W e

W=W f W=W b

In thermal expansion, the amount of mass in the oceans does not increase. Rather, the ocean swells with absorbed heat, changing its volume. With increased volume, but no increase in mass, the density therefore drops.

Lowering the density of the mass of an object tends to "push out" the equipotential surfaces near that mass...

But if we now examine which equipotential surface best fits the global mean sea level, we see that it would no

longer be the surface of W=W0. Let's call this new surface "W=Ws" (for "steric" change). W=W a W=W c W=W 0 W=W d W=W e

W=W f W=W b

Let's examine what happens when ice melts...

Ice (density 0.93) melts...

becoming water (density 1.00)... and is lost to the sea (density 1.03), raising sea level... The density differences are mostly a red herring with respect to the gravitational potential. * Ocean Density decreased by 0.00000052% * Ocean Mass increased by 0.00001700% What is important is that mass is being lost from land and added to the oceans. The mass changes move the equipotential surfaces about. Added mass tends to "pull in" equipotential surfaces, while lost mass tends to "push out" equipotential surfaces.

As in the steric sea level change, if

we now examine which equipotential surface best fits the global mean sea level, we see that it would no longer be the surface of W=W0. Let's call this new surface "W=Wm" (for "melting" change). W=W a W=W c W=W 0 W=W d W=W e

W=W f W=W b

Let' sum up what we've seen so far...

1)The p

h ysical location

of global mean sea level, relative to some unchanging datum like an ECEF ellipsoid is rising a few mm / year

2)Half of the cause of that surface change is from steric (thermal expansion) effects

3)The other half is through the addition of new mass from melting land ice

4)However, while both effects have the same sign regarding location of sea level,

they have an opposite sign regarding location of equipotential surfaces near the ocean's surface!

Q: Which effect dominates?

A: It's irrelevant, unless it can be proven that these two effects are 100% in balance with respect to the gravitational potential.

quotesdbs_dbs41.pdfusesText_41
[PDF] geo ide

[PDF] geoide terrestre

[PDF] note de service respect des consignes

[PDF] géodésie cours

[PDF] pascal le cœur et la raison

[PDF] loi normale centrée réduite calculatrice casio

[PDF] loi normale ti 83 premium

[PDF] loi binomiale ti 83 plus

[PDF] norman rockwell paintings

[PDF] notation decimale en fraction

[PDF] montrer qu un nombre est decimal

[PDF] comment démontrer qu un nombre est décimal

[PDF] la liberté de parole norman rockwell

[PDF] qu'est ce qu'une fraction décimale

[PDF] notation décimale allo prof