[PDF] Math-IV-algèbre Formes (bi)linéaires





Previous PDF Next PDF



Chapitre 2 Formes bilinéaires symétriques formes quadratiques

x et y dans la base E) est bien une forme bilinéaire symétrique. Exemple : (. 3. 1. 1 ?2. ) est la matrice (dans la base canonique) de la forme.



Université Claude Bernard Lyon 1 Licence Sciences

DEFINITION 3 : FORME BILINEAIRE SYMETRIQUE ANTISYMETRIQUE ET ALTERNEE b forme bilinéaire sur E. On dit que b est : ? Symétrique : Si ( ) ( ). ? 



Math-IV-algèbre Formes (bi)linéaires

Soit E un K?espace vectoriel. Soit Q : E × E ? K une forme bilinéaire symétrique. Exemple : le produit scalaire usuel sur R3 × R3.



Applications Bilinéaires et Formes Quadratiques

Ceci nous permet de donner un autre exemple fondamental de forme bilinéaire. Soit E un espace vectoriel sur K et E? = L(E; K) le dual de E. Alors on a une 



Formes quadratiques réelles. Exemples et applications

2 nov. 2014 On appelle forme quadratique sur E toute application q de la forme q : E ?? R x ?? ? ?(x x) o`u ? est une forme bilinéaire symétrique sur.



Formes bilinéaires et quadratiques - Formes sesquilinéaires et

d'une forme quadratique) `a un sous-espace vectoriel F de E est toujours une forme bilinéaire (resp. une forme quadratique) sur F. Exemple 8.1.1.



ALGÈBRE BILINÉAIRE Table des matières 1. Formes quadratiques

13 déc. 2019 Exo : trouver un exemple de forme quadratique où on a deux inclusions strictes. {0} ? kerq ? cône isotrope. 1.4. Bases orthogonales ...



1. Formes bilinéaires. Formes quadratiques. . 1.1. Définitions. Soit E

L'endomorphisme f est symétrique si et seulement si sa matrice dans une base orthonormale est symétrique. 7. Page 8. Exemple. Une projection orthogonale est 



UNE BREVE HISTOIRE DES FORMES BILINEAIRES 1

les formes quadratiques avant les formes bilinéaires c'est l'approche



ALG`EBRE BILINÉAIRE (MAT241) Notes de cours. Texte non

ALG`EBRE BILINÉAIRE (MAT241). Exemple 1. Les application ? : E × E ? K suivantes sont des formes bilinéaires sur le K-espace vectoriel E :.



[PDF] Chapitre 2 Formes bilinéaires symétriques formes quadratiques

On peut vérifier que toutes les formes bilinéaires symétriques données en exemple apr`es la définition 2 1 sont non dégénérées En dimension finie une forme 



[PDF] Math-IV-algèbre Formes (bi)linéaires

3 6 Formes bilinéaires symétriques et formes bilinéaires alternées 24 Exemple : Soient P1P2 deux plans distincts de l'espace R3 qui passent



[PDF] Chapitre 2 : Algèbre bilinéaire

2- Forme bilinéaire symétrique et forme quadratique Hypothèse : 2 ? 0 c'est-à-dire caractéristique de ( ( )) ? 2 2 1- Soit ? ( ) 



[PDF] Formes bilinéaires et quadratiques

Toute forme linéaire est représen- tée par un vecteur de E via b Exemple 9 5 1 On consid`ere l'espace vectoriel C de dimension 1 sur C et la forme hermitienne



[PDF] CHAPITRE 2 FORMES BILINÉAIRES SYMÉTRIQUES ET FORMES

Formes bilinéaires symétriques Dans tout ce chapitre K est un corps commutatif de caractéristique 0 et E est un K-espace vectoriel Definition 1 1



[PDF] ALGÈBRE BILINÉAIRE Table des matières 1 Formes quadratiques

13 déc 2019 · ALGÈBRE BILINÉAIRE 5 Exo : trouver un exemple de forme quadratique où on a deux inclusions strictes {0} ? kerq ? cône isotrope



[PDF] Algèbre linéaire et bilinéaire I - LPSM

1 sept 2022 · 2 1 Définition d'une forme bilinéaire Par exemple il faut être capable de traduire un énoncé d'algèbre linéaire en



[PDF] Chapitre 14 :Formes bilinéaires symétriques et formes quadratiques

Soit ? une forme bilinéaire symétrique sur E Q la forme quadratique associée On a pour tous Eyx Préambule : exemples de formes quadratiques :



[PDF] ALGÈBRE BILINÉAIRE ET GÉOMÉTRIE Semestre 4 2016-2017

21 avr 2017 · Orthogonalité relativement à une forme bilinéaire symétrique 11 Un exemple : les polynômes orthogonaux



[PDF] Applications Bilinéaires et Formes Quadratiques

Ceci nous permet de donner un autre exemple fondamental de forme bilinéaire Soit E un espace vectoriel sur K et E? = L(E; K) le dual de E Alors on a une 

  • Comment trouver la forme bilinéaire ?

    Soit b une forme bilinéaire symétrique sur E × E. b(x, y) = tX ME(b)Y . Dans l'autre sens, si M est une matrice symétrique dans Mn(K), alors (x, y) ?? tXMY (o`u X et Y sont les vecteurs colonnes des coordonnées de x et y dans la base E) est bien une forme bilinéaire symétrique.
  • Comment montrer qu'une application est une forme bilinéaire ?

    Une application : f : E × F ?? G est dite K–bilinéaire (ou plus simplement bilinéaire), si ?x ? E, ?y ? F les applications partielles : y ?? f(x, y) et x ?? f(x, y) sont K–linéaires. Dans le cas o`u G est identique `a K, on dit que f est une forme bilinéaire.
  • Comment montrer qu'une forme quadratique est définie positive ?

    La forme quadratique est non dégénérée si et seulement si p + s = n . On dit que est positive (ou que est positive) si : ? x ? E , q ( x ) ? 0 .
  • Cette base est extrêmement utile pour déterminer simplement la forme polaire associée à une forme quadratique donnée (dans l'autre sens si on connaît la forme bilinéaire symétrique, trouver la forme quadratique associée est immédiat, il suffit d'écrire q ( x ) = f ( x , x ) ).

Math-IV-algèbre

Formes (bi)linéaires

Alexis Tchoudjem

Université Lyon I

31 mai 2011

2 Dans ce cours?est un corps qui peut être?;?ou?. Autres notations :SiEest un?espace vectoriel etv1;:::;vnsont des vecteurs deE, on notera : hv1;:::;vni le sous-espace vectoriel deEengendré parv1;:::;vnc-à-dle sous-espace des combinaisons linéaires

1v1+:::+nvn

où1;:::;2?.

Table des matières

1 Quotients 5

1.1 Sommes directes . . . . . . . . . . . . . . . . . . . . . . . . .

5

1.2 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7

2 Formes linéaires 11

2.1 Définition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

2.2 Base duale . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11

2.3 Bidual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

12

2.3.1 Base antéduale . . . . . . . . . . . . . . . . . . . . . .

1 2

2.4 Orthogonalité . . . . . . . . . . . . . . . . . . . . . . . . . . .

13

2.5 Transposée . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15

2.6 Hyperplans . . . . . . . . . . . . . . . . . . . . . . . . . . . .

17

3 Formes bilinéaires 19

3.1 Matrice d"une forme bilinéaire . . . . . . . . . . . . . . . . . .

19

3.2 Formules de changement de bases . . . . . . . . . . . . . . . .

20

3.3 Formes bilinéaires non dégénérées . . . . . . . . . . . . . . . .

20

3.4 Orthogonaux . . . . . . . . . . . . . . . . . . . . . . . . . . .

21

3.5 Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

23

3.6 Formes bilinéaires symétriques et formes bilinéaires alternées .

24

4 Formes quadratiques, formes hermitiennes 25

4.1 Polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . .

25

4.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

26

4.3 Rang, noyau, cône isotrope . . . . . . . . . . . . . . . . . . .

28

4.4 Diagonalisation faible . . . . . . . . . . . . . . . . . . . . . . .

29

4.5 Classification des formes quadratiques complexes . . . . . . .

30

4.6 Classification des formes quadratiques réelles . . . . . . . . .

31

4.7 Formes hermitiennes . . . . . . . . . . . . . . . . . . . . . . .

32

4.8 Formes quadratiques et hermitiennes positives . . . . . . . . .

35

4.9 Orthogonalisation de Gram-Schmidt . . . . . . . . . . . . . .

35

4.10 Orthogonalité . . . . . . . . . . . . . . . . . . . . . . . . . . .

36
3

4TABLE DES MATIÈRES

5 Espaces euclidiens et hermitiens 37

5.1 Espaces euclidiens . . . . . . . . . . . . . . . . . . . . . . . .

37

5.1.1 Distances . . . . . . . . . . . . . . . . . . . . . . . . .

40

5.1.2 Isomorphismes . . . . . . . . . . . . . . . . . . . . . .

41

5.2 Espaces hermitiens . . . . . . . . . . . . . . . . . . . . . . . .

41

5.3 Réduction des matrices symétriques et des endomorphismes

adjoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3.1 Adjoint d"un endomorphisme . . . . . . . . . . . . . .

43

5.3.2 Réduction . . . . . . . . . . . . . . . . . . . . . . . . .

44

5.3.3 Quadriques . . . . . . . . . . . . . . . . . . . . . . . .

45

5.3.4 Classification des coniques . . . . . . . . . . . . . . . .

48

5.3.5 Classification des quadriques en dimension trois . . . .

56

6 Formes bilinéaires alternées 59

6.1 Rappels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

59

6.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . .

60

6.3 Le Pfaffien . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

61

6.4 Groupe symplectique . . . . . . . . . . . . . . . . . . . . . . .

63

7 Les quaternions 65

7.1 Définitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

65

7.2 Norme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

67

7.3 Lien avec les rotations . . . . . . . . . . . . . . . . . . . . . .

68

Chapitre 1

Quotients

1.1 Sommes directes

SoitEun?espace vectoriel. SoientF1;F2deux sous-espaces deE. On dit queEest lasomme directedeF1etF2ou queF2est unsupplé- mentairedeF1dansEsi : i)E=F1+F2etii)F1\F2= 0 notation :

E=F1F2:

Exemple :

?=?+?i Proposition 1.1.1SiE=F1F2et siEest de dimension finie, alors : dimE= dimF1+ dimF2 Proposition 1.1.2SoitEun espace vectoriel de dimension finie et soitF un sous-espace deE. AlorsFadmet un supplémentaire dansE. Démonstration :Soite1;:::;erune base deF. C"est une famille libre donc, on peut la compléter en une basee1;:::;er;:::;endeE. PosonsG:=her+1;:::;eni.

On a :E=FG.q.e.d.

Corollaire 1.1.2.1SiFest un sous-espace vectoriel d"un espaceEde di- mension finie, alors : dimFdimE de plus,dimF= dimEsi et seulement siE=F. 5

6CHAPITRE 1. QUOTIENTS

Théorème 1.1.3SoientF;Gdeux sous-espaces d"un même espace vectoriel

Ede dimension finie. Alors :

dim(F+G) = dimF+ dimGdim(F\G): Exemple :SoientP1;P2deux plans distincts de l"espace?3qui passent par0. AlorsP1\P2est une droite.

Démonstration :SoientF0,G0tels que :

F=F0(F\G) etG= (F\G)G0:

Alors :

F+G=FG0

)dim(F+G) = dimF+ dimG0= dimF+ dimGdim(F\G): q.e.d. SoientF1;:::;Fndes sous-espaces deEun?espace vectoriel. On dit queEest la somme directe desFisi toutx2Es"écrit de manière unique x=x1+:::+xnavec chaquexi2Fi.

Autrement dit si :

i)E=F1+:::+Fn et ii)8x12F1;:::;8xn2Fn; x1+:::+xn= 0)x1=:::=xn= 0 notation :E=F1:::Fn.

Exercice 1

dim(F1:::Fn) = dimF1+:::+ dimFn Exercice 2SoientF1;F2;F3trois sous-espaces d"un même espace vectoriel

Ede dimension finie. Alors,

dim(F1+F2+F3) = dimF1+ dimF2+ dimF3 dim(F1\F2)dim(F2\F3)dim(F1\F3) +dim(F1\F2\F3):

1.2. QUOTIENTS7

1.2 Quotients

SoitEun?espace vectoriel. SoitFun sous-espace deE. Pour tout x2E, on notex+Fl"ensemble des éléments de la formex+yoùy2F. Par exemple, siE=?2, siF=Dest une droite passant par0, alors pour toutx2?2,x+Dest la droite parallèle àDpassant parx.

L"ensemble des

x+F:x2E est notéE=F.

Remarque :0 +F=F.

Proposition 1.2.1Soientx;x02E. Alors,x+F=x0+F,xx02F.

En particulier, pour touty2F,x+F= (x+y) +F.

Remarque :On écrit aussix=x0modFà la place dex+F=x0+F. On définit une addition et une multiplication par les scalaires surE=F par : i)8x;y2E;(x+F) + (y+F) := (x+y) +F ii)8t2?;8x2E; t:(x+F) :=tx+F : Proposition 1.2.2Cette addition et cette multiplication sont bien définies. Avec cette addition et cette multiplication,E=Fest un?espace vectoriel abstrait, c"est le " quotient deEparF» . Démonstration :Il s"agit de montrer que six+F=x0+Fety+F=y0+F, alors :(x+y) +F= (x0+y0) +F. Puis que six+F=x0+F, alors pour toutt2?,tx+F=tx0+F. Maintenant il est facile de vérifier les axiomes de définition d"un espace-vectoriel.q.e.d. Remarque :Le neutre (ou le zéro) deE=Fest0E=F= 0 +F=F. SiE=Fest de dimension finied, on dit queFest decodimensionddans

E. Notation :codim(F;E).

Proposition 1.2.3Soit:E!E=Fl"application :x7!x+F. C"est la projection canonique deEsurE=F. L"applicationest linéaire surjective et son noyau est : ker=F : En pratique, on représente les éléments deE=Fpar un supplémentaire deFdansEplutôt que par l"ensemble des classes moduloF. En effet :

8CHAPITRE 1. QUOTIENTS

Proposition 1.2.4SoitEun?espace vectoriel. SoitFun sous-espace deE. Alors siSest un supplémentaire deFdansE, c-à-dFS=E, la restriction deàS:

0:S!E=F x7!x+F

est un isomorphisme. En particulier,Fest de codimension finie si et seulement siF admet un supplémentaire de dimension finie. Et dans ce cas tous les supplé- mentairesSdeFdansEsont de dimension :dimS= codimE(F). Démonstration :Injectivité :ker0= ker\S=F\S= 0. Surjectivité : six+F2E=F, il existex12F;x22Stels quex=x1+x2.

Alors :x+F=x2+F=0(x2).q.e.d.

Corollaire 1.2.4.1SiEest de dimension finie et siFest un sous-espace deE, alors :dimEdimF= codim(F;E). " Il y a une infinité de supplémentaires (tous isomorphes) alors qu"il n"y a qu"un seul quotient. Donc utiliser le quotient évite de faire un choix particulier. » Proposition 1.2.5Soit':E!E00une application linéaire surjective. Alors, on a un isomorphisme d"espaces vectoriels :':E=ker''!E00 défini par :x+ ker'7!'(x). Démonstration :L"apllication de l"énoncé est bien définie et est bien linéaire.

Elle est surjective car siy2E00, il existex2Etel que'(x) =ydonc :'(x+ ker') =y. Elle est injective car :

x+ ker'2ker','(x+ ker') = 0 ,'(x) = 0,x2ker',x= 0 mod ker' : q.e.d. On en déduit le célèbre théorème du rang : Théorème 1.2.6 (théorème du rang)SoitEun?espace vectoriel de dimension finie. Si':E!Fest une application linéaire, alors :dimE= rang(') + dimker'. (On rappelle que le rang d"une application linéaire est la dimension de son image.

1.2. QUOTIENTS9

Corollaire 1.2.6.1SiEest de dimension finie et si':E!Eest une application linéaire, alors : 'injective,'surjective,'bijective.

SoitEun?espace vectoriel.

Proposition 1.2.7SoientFetGdeux sous-espaces vectoriels deEde co- dimensions finies. AlorsF+GetF\Gsont aussi de codimension finie et : codim(F\G) = codim(F) + codim(G)codim(F+G): Démonstration :On considère l"application linéaire : ':E=FE=G!E=(F+G) (xmodF;ymodG)7!xymod (F+G): C"est une application surjective et son noyau est isomorphe àE=(F\G) par l"isomorphisme :

E=(F\G)!ker'

xmod (F\G)7!(xmodF;xmodG): q.e.d. Exercice 3SoientEFGtrois?espaces vectoriels. On suppose que Gest de codimension fine dansE. Montrer queE=G!E=F,xmodG7! xmodFest linéaire surjective et que son noyau est isomorphe àF=G. En déduire que codim

EG= codimEF+ codimFG

puis quecodimE(F)codimE(G)avec égalité si et seulement siF=G. À retenir :siEest de dimension finie, alors pour tout sous-espace vectorielFdeE, on a : dim(E=F) + dimF= dimE : Proposition 1.2.8SiFest un sous-espace deE, alors : codim

E(F) = 0,dim(E=F) = 0,E=F= 0,E=F :

Démonstration :SiE=F= 0, alors la surjection canonique :E!E=Fest nulle donc son noyauFest toutEdoncF=E.q.e.d.

10CHAPITRE 1. QUOTIENTS

Chapitre 2

Formes linéaires

SoitEun?espace-vectoriel.

2.1 Définition

Uneforme linéairesurEest une application linéaire ::E!?. Exemple :SiE=?[X]est l"espace des polynômes, alors :P7!P(0) etP7!R1

1P(t)dtsont des exemples de formes linéaires.

Soient;0deux formes linéaires surEett2?. Alors+t0est aussi une forme linéaire. L"espace des formes linéaires surEest donc un espace vectoriel. On le note :E. Notation :Soient2E,x2E, on note parfoish;xi:=(x)2?. Exemple important : les formes linéaires sur?n:

Soienta1;:::;an2?. L"application :

n!?;0 B BBB@x 1 x n1 C

CCCA7!a1x1+:::+anxn

est une forme linéaire sur?n. Toutes les formes linéaires sur?nsont de cette forme. En effet, notonse1;:::;enla base canonique de?n. Siest une forme linéaire sur?n, alors pour toutx1;:::;xn2K, on a : 0 B BBB@x 1 x n1 C

CCCA=x1(e1) +:::+xn(en):

2.2 Base duale

Supposons queEest de dimension finie.

11

12CHAPITRE 2. FORMES LINÉAIRES

Soite1;:::;enune base deE. Pour tout1inon définit la forme linéaire coordonnée d"indiceipar : e i(x1e1+:::+xnen) =xi: Théorème 2.2.1SoitB= (e1;:::;en)une base deE. Alors la famille B := (e1;:::;en)est une base du dualE; c"est la base duale deB. En particulier,dimE= dimE. De plus, pour tout2E, on a : =h;e1ie1+:::+h;enien et pour toutx2E, on a : x=nX i=1hei;xiei: Exercice 4Vérifier que siEest l"espace des polynômes à coefficients dans ?de degrén, la base

1;:::;Xnn!

a pour base duale :

0;:::;n

oùi:P(X)7!P(i)(0).

2.3 Bidual

On appellebidualdeEle dual du dual deE, notéE.

Théorème 2.3.1Six2E, on notebx:E!?,7!(x). On abx2E.

De plus, siEest de dimension finie, alors :

E!E x7!bx est un isomorphisme. Lemme 2.3.2Soit06=x2E, alors, il existe2Etel que(x)6= 0.

2.3.1 Base antéduale

Proposition 2.3.3Soit(1;:::;n)une base deE. Alors il existe une seule base(v1;:::;vn)deEtelle que pour touti,i=vi. On dit que(v1;:::;vn)est la base antéduale de(1;:::;n).

2.4. ORTHOGONALITÉ13

Démonstration :

CommeE!E,x7!bxest injective,Eest forcément de dimension finie. Soit(1;:::;n)la base duale de(1;:::;n)dansE. D"après le théorème

2.3.1, il existe, pour touti,vi2Etel quebvi=i. Il est facile de vérifier que

(v1;:::;vn)est la base antéduale de(1;:::;n). q.e.d. Calcul pratique :SoitE=?n. Soit(1;:::;n)une base deE. Soit (e1;:::;en)la base canonique deE. SoitBla matrice :

B:= (hi;eji)1i;jn:

Alors, la base antéduale de(1;:::;n)est donnée par les colonnes de la matriceB1. Proposition 2.3.4SoitFun sous-espace deE. La restriction : E !F; 7!jF est surjective. Son noyau est l"orthogonal deF.

2.4 Orthogonalité

On dit que2Eetx2Esontorthogonauxsih;xi=(x) = 0.

SiVest un sous-espace deE, on note

V ?:=f2E:8x2V;h;xi= 0g c"est un sous-espace vectoriel deE(exo), appelél"orthogonaldeV. SiW est un sous-espace deE, on note : W :=fx2E:82W;h;xi= 0g c"est un sous-espace vectoriel deE(exo), appelél"orthogonaldeW. Remarque importante :SiVest engendré par les vecteursv1;:::;vn, alors : V ?=f2E:h;v1i=:::=h;vni= 0g de même siWest engendré par les formes linéaires1;:::;n, alors : W =fx2E:h1;xi=hn;xi= 0g: " L"orthogonal renverse les inclusions » : Proposition 2.4.1i) SiV1V2Esont des sous-espaces deE, alors V ?2V?1. ii) SiW1W2Esont des sous-espaces deE, alorsW2W1. iii)f0Eg?=E,E?=f0Eg.quotesdbs_dbs41.pdfusesText_41
[PDF] le rôle des médias dans la culture

[PDF] medias et culture

[PDF] evolution des médias

[PDF] culture médiatique définition

[PDF] histoire des medias dans le monde

[PDF] histoire et évolution des médias

[PDF] puissance de 10 ecriture decimale

[PDF] notation scientifique exercices corrigés 3eme

[PDF] sigma de 1/k

[PDF] les formes poétiques

[PDF] somme sigma mathématique

[PDF] sigma k

[PDF] resultat tpe 2016

[PDF] inventer une ruse de renart

[PDF] que signifie le mot roman au moyen age