[PDF] PROBABILITÉS Dans le jeu de la "





Previous PDF Next PDF



PROBABILITÉS

Dans le jeu de la "Méthode" du paragraphe précédent calculer l'espérance



Espérance variance

https://www.unige.ch/math/mgene/cours/slides8.pdf



VARIABLES ALÉATOIRES

exposer une théorie nouvelle : les calculs de probabilités. variance et l'écart-type de la loi de probabilité de X et interpréter les résultats pour.



Probabilités continues

remarque : on peut prendre a = ?? ou b = +? dans cette formule. Soit X une variable aléatoire continue de densité fX sa variance est.



7 Lois de probabilité

suit une loi normale de moyenne µ et de variance ?2 notée X ? N (µ



Probabilités et variables aléatoires

variance d'une variable aléatoires sont définies avant de signaler (formule des probabilités totales) Soit (Ai)i?I une fa-.



Probabilité Espérance

https://cermics.enpc.fr/~bl/decision-incertain/cours/cours-1.pdf?refresh=echo%20rand(2



Formules de probabilités et statistique

Variance de la population ? = ? ?2. Écart-type de la population n. Effectif (nombre d'individus) de l'échantillon. ¯x = 1 n. ?n i=1 xi. Moyenne 



Chapitre 3: Variables aléatoires discrètes Espérance-Variance Loi

Corollaire 4.7 (Formule pour la variance) : Soit X une v.a. discrète prenant les valeurs xi avec les probabilités pi (i ? D) et ayant un mo-.



Cours de mathématiques Partie IV – Probabilités MPSI 4

30 May 2014 Formule des probabilités composées . ... VI Principes généraux du calcul des probabilités . ... Espérance et variance conditionnelle .



[PDF] Espérance variance quantiles

22 mai 2008 · Espérance variance quantiles Probabilité Gain × Proba Définition : La variance d'une v a X (si elle existe) est



[PDF] PROBABILITÉS - maths et tiques

Dans le jeu de la "Méthode" du paragraphe précédent calculer l'espérance la variance et l'écart-type de la loi de probabilité de X et interpréter les 



[PDF] Cours de Probabilités

Calcul de la variance : V (Y ) = dans le cas discret et V (Y ) = dans le cas continu Page 37 Chapitre 6 Lois continues usuelles 6 1 Loi continue uniforme



[PDF] Cours de probabilités et statistiques

Proposition 7 (Formule des probabilités totales) Soit A un événement tel que 0 < Un calcul analogue permet de calculer la variance (exercice)



[PDF] Formulaire de Probabilités et Statistique - Christophe Chesneau

pdf ? Éléments de cours de Probabilités de Jean-François Marckert : Formule des probabilités composées (à l'ordre 3) : Espérance et variance :



[PDF] Probabilités et variables aléatoires

Espérance et variance d'une variable aléatoires sont définies avant de signaler les deux théorèmes importants : loi des grands nombre et théorème de central 



[PDF] MODULE 7 LOIS PROBABILITÉ PROBABILITÉ - Université du Québec

Les lois de probabilité permettent de décrire les variables aléatoires sous suit une loi normale de moyenne µ et de variance ?2 notée X ? N (µ ?2)



Cours 5 : Variance ? Écart-type dune variable aléatoire

en probabilité on définit de même la variance de la variable aléatoire X que l'on note V(X) et l'écart-type ?(X) : la variance est égale à la moyenne des 



[PDF] Cours probabilités et statistiques

On utilise la formule car la même probabilité pour chaque Variance: c'est la distance entre la variable aléatoire et son espérance



[PDF] Espérance et variance Variables Aléatoires discrètes

Montrer que la variance d'une variable aléatoire de Bernoulli vaut p(1 ? p) Solution 1 E[X] = ? k xkP(X = 

  • Comment calculer la variance en probabilité ?

    V(X) est la moyenne des carrés des écarts entre les valeurs prises par X et l'espérance pondérée par les probabilités correspondantes. Ainsi V(X) = E((X ? ?)2).
  • C'est quoi la variance probabilité ?

    C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance. La variance est l'écart carré moyen entre chaque donnée et le centre de la distribution représenté par la moyenne.
  • Comment calculer la variance exemple ?

    Notez la formule de la variance de la population.

    1? = (?( x i {\\displaystyle x_{i}} - ?) )/n.2Variance de la population = ? . 3x i {\\displaystyle x_{i}} 4Les termes après le ? seront calculés pour chaque valeur de. 5? est la moyenne de la population.6n est le nombre de données dans la population.
  • La variance est utilisée dans le domaine de la statistique et de la probabilité en tant que mesure servant à caractériser la dispersion d'une distribution ou d'un échantillon. Il est possible de l'interpréter comme la dispersion des valeurs par rapport à la moyenne.

1YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frPROBABILITÉS En 1654, Blaise Pascal (1623 ; 1662) entretient avecPierre de Fermat(1601 ; 1665) des correspondances sur le thème des jeux de hasard et d'espérance de gain qui les mènent à exposer une théorie nouvelle : les calculs de probabilités. Ils s'intéressent à la résolution de problèmes de dénombrement comme par exemple celui duChevalierdeMéré: "Commentdistribueréquitablementlamiseàunjeudehasardinterrompuavantlafin?» I. Variable aléatoire et loi de probabilité 1) Variable aléatoire Exemple : Soit l'expérience aléatoire : "On lance un dé à six faces et on regarde le résultat." L'ensemble de toutes les issues possibles Ω = {1; 2; 3; 4; 5; 6} s'appelle l'univers des possibles. On considère l'événement A : "On obtient un résultat pair." On a donc : A = {2; 4; 6}. On considère l'événement élémentaire E : "On obtient un 3". On a donc : E = {3}. Définitions : - Chaque résultat d'une expérience aléatoire s'appelle une issue. - L'univers des possibles est l'ensemble des issues d'une expérience aléatoire. - Un événement est un sous-ensemble de l'univers des possibles. - Un événement élémentaire est un événement contenant une seule issue. Exemple : Dans l'expérience précédente, on considère le jeu suivant : - Si le résultat est pair, on gagne 2€. - Si le résultat est 1, on gagne 3€. - Si le résultat est 3 ou 5, on perd 4€. On a défini ainsi une variable aléatoire X sur Ω = {1; 2; 3; 4; 5; 6} qui peut prendre les valeurs 2, 3 ou -4. On a donc : X(1) = 3, X(2) = 2, X(3) = -4, X(4) = 2, X(5) = -4, X(6) = 2 Définition : Une variable aléatoire X est une fonction définie sur un univers Ω et à valeur dans

2YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr 2) Loi de probabilité Exemple : On considère la variable aléatoire X définie dans l'exemple précédent. Chaque issue du lancer de dé est équiprobable et égale à

1 6 . La probabilité que la variable aléatoire prenne la valeur 2 est égale à 1 6 1 6 1 6 1 2 . On note : P(X = 2) = 1 2 . De même : P(X = 3) = 1 6 et P(X = -4) = 1 6 1 6 1 3 . On peut résumer les résultats dans un tableau : xi -4 2 3 P(X = xi) 1 3 1 2 1 6

Ce tableau résume la loi de probabilité de la variable aléatoire X. Définition : Soit une variable aléatoire X définie sur un univers Ω et prenant les valeurs x1, x2, ..., xn. La loi de probabilité de X associe à toute valeur xi la probabilité P(X = xi). Remarques : - P(X = xi) peut se noter pi. - p1 + p2 + ... + pn = 1 Exemple : Dans l'exemple traité plus haut : p1 + p2 + p3 =

1 3 1 2 1 6

= 1. Méthode : Déterminer une loi de probabilité Vidéo https://youtu.be/2Ge_4hclPnI Soit l'expérience aléatoire : "On tire une carte dans un jeu de 32 cartes." On considère le jeu suivant : - Si on tire un coeur, on gagne 2€. - Si on tire un roi, on gagne 5€. - Si on tire une autre carte, on perd 1€. On appelle X la variable aléatoire qui à une carte tirée associe un gain ou une perte. Déterminer la loi de probabilité de X.

3YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frLa variable aléatoire X peut prendre les valeurs 2, 5, -1 mais aussi 7. En effet, si on tire le roi de coeur, on gagne 5(roi) + 2(coeur) = 7€. - Si la carte tirée est un coeur (autre que le roi de coeur), X = 2. P(X = 2) =

7 32
. - Si la carte tirée est un roi (autre que le roi de coeur), X = 5. P(X = 5) = 3 32
. - Si la carte tirée est le roi de coeur, X = 7. P(X = 7) = 1 32
. - Si la carte tirée n'est ni un coeur, ni un roi, X = -1. P(X = -1) = 21
32
. La loi de probabilité de X est : xi -1 2 5 7 P(X = xi) 21
32
7 32
3 32
1 32

On constate que : p1 + p2 + p3 + p4 =

21
32
7 32
3 32
1 32

= 1 II. Espérance, variance, écart-type Définitions : Soit une variable aléatoire X définie sur un univers Ω et prenant les valeurs x1, x2, ..., xn. La loi de probabilité de X associe à toute valeur xi la probabilité pi = P(X = xi). - L'espérance mathématique de la loi de probabilité de X est : E(x) = p1 x1 + p2 x2 + ... + pn xn

=p i x i i=1 n

- La variance de la loi de probabilité de X est : V(x) = p1(x1 - E(X))2 + p2(x2 - E(X))2 + ... + pn(xn - E(X))2

=p i x i -E(X) 2 i=1 n - L'écart-type de la loi de probabilité de X est :

σ(X)=V(X)

4YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Méthode : Calculer l'espérance, la variance et l'écart-type d'une loi de probabilité Vidéo https://youtu.be/AcWVxHgtWp4 Vidéo https://youtu.be/elpgMDSU5t8 Dans le jeu de la "Méthode" du paragraphe précédent, calculer l'espérance, la variance et l'écart-type de la loi de probabilité de X et interpréter les résultats pour l'espérance et l'écart-type. E(X) =

21
32

×-1

7 32
×2 3 32
×5 1 32
×7 15 32
. V(X) = 21
32

×-1-

15 32
2 7 32

×2-

15 32
2 3 32

×5-

15 32
2 1 32

×7-

15 32
2 ≈5,1865 σX ≈5,1865≈2,28 . L'espérance est égale à 15 32
≈0,5

signifie qu'en jouant, on peut espérer gagner environ 0,50€. L'écart-type est environ égal à 2,28 signifie qu'avec une espérance proche de 0,50 le risque de perdre de l'argent est important. Remarques : - L'espérance est la moyenne de la série des xi pondérés par les probabilités pi. En effet : E(X) = p1 x1 + p2 x2 + ... + pn xn

p 1 x 1 +p 2 x 2 +...+p n x n 1 p 1 x 1 +p 2 x 2 +...+p n x n p 1 +p 2 +...+p n

En répétant un grand nombre de fois l'expérience, la loi des grands nombres nous permet d'affirmer que les fréquences se rapprochent des probabilités théoriques. La moyenne des résultats se rapprochent donc de l'espérance de la loi de probabilité. L'espérance est donc la moyenne que l'on peut espérer si l'on répète l'expérience un grand nombre de fois. - La variance (respectivement l'écart-type) est la variance (respectivement l'écart-type) de la série des xi pondérés par les probabilités pi. L'écart-type est donc une caractéristique de dispersion "espérée" pour la loi de probabilité de la variable aléatoire. Propriétés : Soit une variable aléatoire X définie sur un univers Ω. Soit a et b deux nombres réels. On a : E(aX+b) = aE(X)+b V(aX+b) = a2V(X)

5YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr Démonstrations :

E(aX+b)=p

i ax i +b i=1 n =ap i x i i=1 n +bp i i=1 n =ap i x i i=1 n +b =aE(X)+b

V(aX+b)=p

i ax i +b-aE(X)+b 2 i=1 n =p i ax i -aE(X) 2 i=1 n =a 2 p i x i -E(X) 2 i=1 n =a 2 VX

Méthode : Simplifier les calculs d'espérance et de variance à l'aide d'une variable aléatoire de transition Vidéo https://youtu.be/ljITvCBExVY Une entreprise qui fabrique des roulements à bille fait une étude sur une gamme de billes produites. Le diamètre théorique doit être égal à 1,3 cm mais cette mesure peut être légèrement erronée. L'expérience consiste à tirer au hasard une bille d'un lot de la production et à mesurer son diamètre. On considère la variable aléatoire X qui à une bille choisie au hasard associe son diamètre. La loi de probabilité de X est résumée dans le tableau suivant : xi 1,298 1,299 1,3 1,301 1,302 P(X = xi) 0,2 0,1 0,2 0,4 0,1 Calculer l'espérance et l'écart-type de la loi de probabilité de X. Pour simplifier les calculs, on définit la variable aléatoire Y = 1000X - 1300. La loi de probabilité de Y est alors : xi -2 -1 0 1 2 P(Y = xi) 0,2 0,1 0,2 0,4 0,1 Calculons l'espérance et la variance de la loi de probabilité de Y : E(Y) = -2x0,2 + (-1)x0,1 + 1x0,4 + 2x0,1 = 0,1 V(Y) = 0,2x(-2 - 0,1)2 + 0,1x(-1 - 0,1)2 + 0,2x(0 - 0,1)2 + 0,4x(1 - 0,1)2 + 0,1x(2 - 0,1)2 = 1,69 On en déduit l'espérance et la variance de la loi de probabilité de X : E(Y) = E(1000X - 1300) = 1000 E(X) - 1300

6YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.frDonc :

E(X)=

E(Y)+1300

1000

0,1+1300

1000
=1,3001

V(Y) = V(1000X - 1300) = 10002 V(X) Donc :

V(X)= V(Y) 1000
2 1,69 1000
2

Et donc :

σX 1,69 1000
2 1,3 1000
=0,0013

Conclusion : E(X) = 1,3001 cm et

σX =0,0013

cm. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs22.pdfusesText_28
[PDF] esperance ecart type loi binomiale

[PDF] ecart type probabilité

[PDF] variance probabilité première s

[PDF] pensee positive permanente

[PDF] etre positif pdf

[PDF] le pouvoir de la pensée positive pdf gratuit

[PDF] pensée positive citation pdf

[PDF] pensée positive gratuite télécharger

[PDF] livre la puissance de la pensée positive pdf gratuit

[PDF] la pensée positive pour les nuls pdf gratuit

[PDF] soon the end

[PDF] cest bientot la fin paroles

[PDF] mozart opera rock c'est bientôt la fin lyrics

[PDF] allez viens c'est bientôt la fin paroles

[PDF] allez viens c'est bientôt la fin 1789