[PDF] La démonstration par récurrence





Previous PDF Next PDF



La démonstration par récurrence

n(n +1). 2 pour tout entier n )). La démonstration par récurrence se fait en trois étapes : • Initialisation : on vérifie que la propriété est vraie 



Récurrence ; Sommes produits

27?/09?/2011 1 Démonstration par récurrence ... récurrence n'est pas très compliqué si on se force à bien en respecter la structure la rigueur est donc.



Entraînement sur les récurrences

donc la propriété est vraie au rang n + 1 ce qu'on voulait. Corrigé 2. Nous allons démontrer cette inégalité par récurrence sur n. Initialisation : pour n = 1 



Raisonnement par récurrence

Correction (1.28 question 2). Montrons par récurrence sur n la propriété. Pn : ?x > 0



Chapitre 3: La démonstration par récurrence

2 · 1 expression que l'on appelle n factorielle (?n ? IN *). Page 7. CHAPITRE 3. DEMONSTRATION PAR RECURRENCE. 39. 2MSPM – JtJ 



Combinatoire énumérative

1 × 2 × 3 ×···× (n ? 1) × n. On lit "n factorielle". Proposition 3. Le nombre de manières d'ordonner n éléments est n!. Démonstration. Nous avons n 



Calcul Algébrique

Table des matières. 1 Cours. 2. 1.1 Sommes et produits . des nombres de 1 à n est n!. Démonstration : On montre le théorème par récurrence sur n.



Sommes produits

https://www.normalesup.org/~glafon/carnot10/recurrence.pdf



Le raisonnement par récurrence

Preuve : notons A l'ensemble des naturels n tels que P(n) soit vraie. La propriété 1 nous dit que 0 appartient. `a A ; la propriété 2 nous dit que si n 



Chapitre 1. Raisonnement par récurrence

+. P n 1 à démontrer. 2) Si on veut prouver que la propriété est vraie pour ? n 0 on commence l'initialisation à ( ).



Z ] í X Z ] } v v u v µ v

1 Raisonnement par récurrence 7 ô î W ] X ^ µ } } v W v À ] ~ [ r r ] µ v v í

Quel est le principe de la démonstration par récurrence ?

Eh bien il s’agit exactement du principe de la démonstration par récurrence. Essayons de le comprendre en reformulant cet exemple des dominos en termes mathématiques. La démonstration par récurrence sert à démontrer des propriétés qui portent sur les entiers naturels, c’est-à-dire des propriétés de la forme : “Pour tout n ? N, blablabla” .

Qui a inventé la récurrence ?

Le terme récurrence est apparu au début du 20è siècle. On parle alors de formules de récurrence et de raisonnement par récurrence pour parler du rai- sonnement par induction introduit par Blaise Pascal.

Comment utiliser le principe de récurrence ?

On est amené à utiliser le principe de récurrence suivant : Cette propriété est en apparence plus forte que la récurrence simple, puis que l'on a une hypothèse supplémentaire à notre disposition, mais lui est en fait équivalente, puisque cela revient à démontrer [ P ( n) et P ( n +1)] par récurrence simple.

Comment calculer la récurrence linéaire ?

n) vérie la relation de récurrence linéaire d'ordre 2 suivante : a 0= 0; a 1= 1; 8n2N; a n+2 a n+1 2 a n 2 = 0: Le polynôme caractéristique étant ˜ f, on a déjà calculé sa racines, qui sont  1= 1 et  2= 1 2 .

Année 2007-20081èreSSVT

La démonstration par récurrence

Dans toute la suitenappartientàN.

La démonstrationparrécurrencesertlorsqu"onveut démontrerqu"une propriété,dépendantde n, est vraie pour toutes les valeurs den. On appelle dans ce casPnla propriétéen question. On est ainsi amené à montrer que la propriétéPnest vraiepour toutesles valeursden. P

1?P0?P2?P3?P4?······

Exemple :Prenons un exemple simple pour illustrer le raisonnement par récurrence. On veut montrer par récurrence la propriété : ??pour tout entiernon a : 0+1+2+···+n=n(n+1) 2.??

Pour n"importe quel entiernon appellePnla propriété (à démontrer):??1+2+···+n=n(n+1)

2??. On peut à présent démontrer par récurrence que :??0+1+2+···+n=n(n+1)

2pour tout entiern??.

La démonstration par récurrencese fait en trois étapes : •Initialisation: on vérifie que la propriété est vraie pour la première valeur den(souvent n=0).

On vérifie donc queP0est vraie.

P 1?

P0vraieP2?P3?P4?······

Exemple :

•Initialisation: icin=0 doncn(n+1)2=0×(0+1)2=0 et ainsi la propriétéP0est vraie. •Hérédité:

on démontre la propriété suivante :??si la propriété est vraie pour un certain rangk(n"importe lequel)

alors la propriété est vraie pour le rang juste après c"est-à-dire pour le rangk+1??.

PkvraiePk+1?transmission

La propriété se transmet de la valeur de l"indicekà la valeur de l"indicek+1.

On dit que la propriété est

héréditaire.

Page 1/2

Année 2007-20081èreSSVT

Exemple :•Transmission:

Sila propriétéPkest vraie(pour un certain k)montrons qu"alorsPk+1est vraie aussi . On sait (par hypothèse de récurrence) : 0+1+2+···+k=k(k+1) 2. On veut démontrer que : 0+1+2+···+(k+1)=(k+1)?(k+1)+1?

2=(k+1)(k+2)2.

On a 0+1+2+···+(k+1)=0+1+2+···+k+(k+1) . Par ailleurs d"après l"hypothèse de récurrence 0+1+2+···+k=k(k+1)

2donc 0+1+2+···+(k+1)=k(k+1)2+(k+1) .

On a ensuite

k(k+1)

2+(k+1)=k(k+1)2+2(k+1)2=(k+1)(k+2)2et donc il suit que

0+1+2+···+(k+1)=(k+1)(k+2)

2.

La propriétéPk+1est ainsi vraie.

On a donc bien montré que si

Pkest vraie alorsPk+1l"est aussi.

•Conclusion:

les deux étapes précédentes permettent de conclure que la propriété est vraie pour tous les entiersn.

En effet la propriétéest vraie au rang 0 donc avec l"étape d"hérédité elle devient vraie au rang 1. On peut

alors réappliquer l"étape d"hérédité au rang 1 et la propriété devient vraie au rang 2.

En réappliquant l"étape d"hérédité de proche de proche, il suit que la propriété est vraie pour tous les

entiersn.

P1vraieP0vraieP2?transmission

P

3?P4?······

P1vraieP0vraieP2vraieP3vraie

P4?transmission

Exemple :

•Conclusion: On a ainsi pour tout entiernl"égalité : 0+1+2+···+n=n(n+1)2.

Page 2/2

quotesdbs_dbs21.pdfusesText_27
[PDF] n(n 1)(2n 1)/6 demonstration

[PDF] bar en kg

[PDF] kg/cm2 en bar

[PDF] 10 psi en bar

[PDF] convertir pascal en bar

[PDF] convertir mpa en bar

[PDF] 1 mega pa en bar

[PDF] 1 bar en hectopascal

[PDF] 1 mégapascal

[PDF] tableau de conversion cm3

[PDF] tableau de conversion m3 en l

[PDF] 1l en cm3

[PDF] conversion cm en cm3

[PDF] catu am-18/1

[PDF] exemple fiche e6 contexte international