[PDF] [PDF] Partie 2 : Les ondes progressives





Previous PDF Next PDF



ondes électromagnétiques planes progressives monochromatiques

définition : une onde électromagnétique plane progressive se propageant dans la direction et le sens du vecteur x u est sinusoïdale ou monochromatique si et 



II- Structure de londe plane dans le vide et dans les milieux

alors que r ? est utilisé en statique . 4- Onde plane progressive monochromatique OPPM. C'est une onde périodique dont l'expression générale est :.



Ondes électromagnétiques dans le vide

Par définition une onde plane progressive se propageant dans le sens de x croissant est Ondes électromagnétiques planes progressives monochromatiques.



Chapitre 2 - Léquation donde

2.3.1 L'onde plane progressive. On appelle onde plane (OP en abrégé) monique est une onde plane progressive monochromatique. – Violet : 04 - 0



TD corrigés sur les ondes

29 oct. 2011 (relation caractéristique d'une onde plane progressive monochromatique dans le vide). 3) Onde dans le vide : On a l'onde électromagnétique ...



La polarisation de la lumière (PC*)

1 – Représentation vectorielle réelle d'une onde plane progressive monochromatique : Page 3. 3 http://plateforme.sillages.info. On considère une onde EM plane 



Ondes électromagnétiques dans le vide

On considère une onde EM plane progressive monochromatique de pulsation ? se propageant dans le vide. On choisit l'axe (Oz) comme l'axe de propagation soit.



CHAPITRE EM5 : PROPAGATION

d'une onde plane progressive dans l'espace vide de charge et de courant. Onde plane progressive monochromatique. Expliquer le caractère idéal du modèle de.



Ondes électromagnétiques dans le vide

Soit une onde plane progressive monochromatique de pulsation ? et de vecteur d'onde k = k. uz



PHYSIQUE

électromagnétiques dans le vide puis dans un deuxième temps



[PDF] ondes électromagnétiques planes progressives monochromatiques

définition : une onde électromagnétique plane progressive se propageant dans la direction et le sens du vecteur x u est sinusoïdale ou monochromatique si et 



[PDF] Structure des ondes planes progressives harmoniques

électromagnétique plane progressive harmonique dans le vide sont en phase L'ensemble de ces résultats constitue la structure des ondes électroma-



[PDF] II- Structure de londe plane dans le vide et dans les milieux

1 Equations de Maxwell dans un milieu diélectrique non chargé Les champs intermédiaires peuvent être 4- Onde plane progressive monochromatique OPPM



[PDF] Ondes électromagnétiques dans le vide - Olivier GRANIER

1 – Représentation vectorielle réelle d'une onde plane progressive monochromatique : On considère une onde EM plane progressive monochromatique de pulsation 



[PDF] Réflexion sous incidence normale dune onde plane progressive

EM 8 b - Réflexion sous incidence normale d'une onde plane progressive monochromatique polarisée rectilignement sur un plan conducteur parfait



[PDF] Partie 2 : Les ondes progressives

1 2 Solution générale de l'équation d'onde 1 2 1 Onde progressive à une dimension Afin de résoudre l'équation d'onde on procède au changement de variable 



[PDF] Ondes électromagnétiques dans le vide - Frédéric Legrand

1 b Ondes planes progressives Par définition une onde plane progressive se propageant dans le sens de x croissant est de la forme : u+(x t) = F(x - ct)



[PDF] Ondes électromagnétiques dans un milieu dispersif - Frédéric Legrand

1 a Définitions Dans un milieu matériel transparent aux ondes gation d'une onde électromagnétique plane progressive monochromatique (OPPM) de polari-



[PDF] Chapitre 15 :Propagation des ondes électromagnétiques - Melusine

one plane progressive et d'une onde plane régressive : 1 1 µ µ ? =? = • Vitesse de propagation de l'énergie :



[PDF] Cours dOndes Électromagnétiques

Onde plane progressive monochromatique vers +z Ondes électromagnétiques (14 séances CM ; 7 TD ; 1 DS) ? Introduction ? Les équations de Maxwell

  • Qu'est-ce qu'une onde plane progressive ?

    définition : une onde électromagnétique plane progressive se propageant dans la direction et le sens du vecteur x u est sinuso?le ou monochromatique si, et seulement si le champ électrique E de cette onde est de la forme : ) cos(. ) cos(. ) cos(.
  • C'est quoi une onde plane monochromatique ?

    Une onde monochromatique, ou onde harmonique est une onde qui peut être décrite par une fonction sinuso?le du temps. Sa densité spectrale d'énergie ne présente qu'une seule fréquence, qu'une seule longueur d'onde.
  • Comment savoir si une onde est progressive ou stationnaire ?

    Les ondes progressives sont des oscillations produites par le transfert d'énergie d'un endroit à un autre. Elles diffèrent des ondes stationnaires en ce qu'elles progressent (se déplacent) dans le milieu dans lequel elles se propagent.
  • Cela signifie que dans le vide toutes les ondes électromagnétiques se propagent à la même vitesse de phase, quelle que soit leur fréquence. La constante c est donc la vitesse de la lumière dans le vide.
M1 TTS - UFR STEP - Université Paris 7 Cours d"Optique et Physique des Ondes

Partie 2 : Les ondes progressives

Une onde peut être considérée comme la manifestation du comportement propagatif des vibrations

affectant un système possédant un grand nombre de degré de liberté. Dans le chapitre précédent, nous

avons étudié le comportement vibratoire d"une chaîne d"oscillateurs mécaniques constituée d"un nombre

finiNde masses. Un tel systèmeferméoscillait librement selonNmodes de vibrations stationnaires.

LorsqueNdevient infini, les vibrations ne restent plus confinées dans une région fermée de l"espace, mais

vont plutôt sepropagerdepuis le point où elles ont pris naissance suite à une perturbation initiale. C"est

ce phénomène que nous allons ici étudier.

1 L"équation d"onde

1.1 Mise en évidence de l"équation d"onde

Pour mettre en évidence la structure mathématique du phénomène ondulatoire, nous allons étudier

le système constitué d"une chaîne infinie d"oscillateurs identiques composés de massesmet de ressorts

de raideursKmontés en série (Figure 1). Nous supposerons dans un premier temps que les masses nen-1nn+1K

a mFigure1 peuvent se mouvoir que dans la direction longitudinale. Nous supposerons également pour commencer

que les longueurs d"ondes des vibration sont "grandes" par rapport à l"espacement moyen entre les masses.

En notantala longueur naturelle de chaque ressort à l"équilibre, etXnl"écart de la masse numéronpar

rapport à sa position d"équilibre, on peut établir l"équation du mouvement de la masse numéron:

m

Xn=K(XnXn1) +K(Xn+1Xn)(1)

On constate que l"équation du mouvement pour la massenimplique la position de la massenà travers

la fonctionXnet sa dérivée secondeXn. Cependant, cette équation différentielle contient aussi une

dépendance par rapport aux positions des masse voisines à travers les fonctionsXn1etXn+1. Les

équations différentielles régissant l"évolution des massesn1,n,n+ 1, ... sont donccouplées. On a

déjà rencontré cette situation au cours de l"étude de la chaîne d"oscillateurs àNdegrés de liberté. On

a montré que le découplage de ces équations nécessite de calculer l"inversed"une matrice de dimensions

NN. Ici, puisqueN! 1, il n"est pas possible de procéder de la même manière. Il est donc impossible

de découpler ces équations. Adoptons à présent les notation indiquées sur la Figure 2 :Xn1(t)!X(xa;t);Xn(t)!X(x;t); X n+1(t)!X(x+a;t). La fonctionXest désormais une fonction continue dépendant des deux variables

xett, et nous l"échantillonnonsaux positionsxaetx+aet à l"instantt. On prendra donc garde à rem-

placer les dérivées simples par rapport au tempstpar des dérivées partielles. L"équation du mouvement

devient alors : m @2X(x;t)@t

2=K[X(x;t)X(xa;t)] +K[X(x+a;t)X(x;t)](2)Raphaël Grandin - IPGP - grandin@ipgp.fr Version du21 août 2017

Partie 2: ONDES PROGRESSIVESX(x-a,t)X(x,t)X(x+a,t) xx+ax-aFigure2

On a supposé queaest "petit", ce qui permet d"effectuer les développements limités suivants :

8>< :X(xa;t)DL'X(x;t)a@X@x +a22 2X@x 2

X(x+a;t)'00+00+00(3)

Grâce à ces développements limités, on est maintenant capable de relier les positions des masses voisines

à travers une unique fonctionX:

m @2X@t 2=K a@X@x a22 2X@x 2 +K a@X@x +a22 2X@x 2 =K a2@2X@x 2(4) Cette équation peut être réécrite sous la forme :@ 2X@x 21c
2@ 2X@t

2= 0avecc=rKa

2m(5)

Cette équation aux dérivées partielles est l"équation d"ondeouéquation de d"Alembert. Cette équation

relie la dérivée seconde par rapport au temps (t) et la dérivée seconde par rapport à la variable d"espace

(x). Le fait que la fonctionX(position d"une masse située enxau cours du tempst) vérifie cette équation

signifie queXpossède unestructured"onde. En d"autres termes, la perturbationXse propagera dans

l"espace au cours du temps, et variera en fonction du temps en tout point fixe de l"espace. Il en va de

même pour la force, la vitesse, l"accélération : toutes ces fonctions, qui sont reliées àXou à ses dérivées,

ont une structure d"onde. Le paramètrecest homogène à une vitesse : c"est lacéléritéde l"onde. En

rappellant que!o=pK=mest lapulsation proprede l"oscillateur élémentaire, on trouve quec=a!o.

1.2 Solution générale de l"équation d"onde

1.2.1 Onde progressive à une dimension

Afin de résoudre l"équation d"onde, on procède au changement de variable suivant : (x;t)!(;)avec=tx=c =t+x=c()8 >:t=+2 x=c2 (6)

Suite à ce changement de variable, il est possible d"exprimer la fonctionXpar rapport aux variables

et. Les dérivées partielles deXpar rapport àxettdoivent maintenant être calculées par rapport aux

nouvelles variableset:

8>>>>>>>><

>>>>>>>:@X@t =@X@ :=1 z}|{@@t +@X@ :=1 z}|{@@t =@X@ +@X@ @X@x =@X@ :@@x |{z} =1=c+ @X@ :@@x |{z} =1=c= 1c @X@ @X@ =)8 >>:@@t @@x =1c (7)Cours d"Optique et Physique des Ondes - 2016/2017 2

Partie 2: ONDES PROGRESSIVES

En appliquant une seconde fois lesopérateurs dérivée partielleidentifiés ci-dessus, on obtient :

8>>>< 2X@t 2=@@t @X@t =@2X@

2+ 2@2X@@

+@2X@ 2 2X@x 2=@@x @X@x =1c 2 @2X@

22@2X@@

+@2X@ 2 (8)

En injectant ces dérivées partielles dans l"équation d"onde (équation 5), on aboutit finalement à la

condition suivante :@2X@@ @X@ = 0(9)

Cette condition signifie que, pour que la fonctionXsoit solution de l"équation d"onde, il est nécessaire

que la fonction@X=@ne dépende pas de la variable(bien qu"à l"origine, suite à notre changement

de variable, la fonctionXet ses dérivées partielles par rapport àoupouvaient/devaienta priori

dépendre des deux variables naturelleset). Par conséquent, la fonction@X=@dépenduniquement de. On peut donc l"écrire sous la forme : @X@ ()(10) où est une fonction de. Il est maintenant possible d"intégrer@X=@par rapport à la variable pour trouver l"expression de la fonctionX. Lors de ce calcul, il ne faut pas oublier d"ajouter une

constante d"intégration appropriée. Cette "constante" d"intégration est ici, en fait, n"importe quel nombre

ou fonction ne dépendant pas de la variable d"intégration(on doit pouvoir, en différentiant l"expression

intégrée, retomber sur l"expression initiale) :

X(;) =f() +g()avecg() =Z

()(11) Les variablesetsont maintenantséparées. On peut donc écrire, en rappellant le changement de variable introduit plus haut :X(x;t) =f txc |{z} onde progressive+g t+xc |{z} onde régressive(12)

La première fonctionfcorrespond à la propagation d"une onde progressant dans le sens desxcroissants.

On peut le vérifier en cherchant le lieu des valeurs constantes def, c"est à dire les couples(x;t)tels que

tx=cest constant : lorsquetaugmente, il faut quexaugmente également pour conservertx=c=cste.

La perturbation va donc se déplacer vers lesxcroissants. Au contraire, la seconde fonctiongest identifiée

à une onde régressive se propageant vers lesxdécroissants. La solution générale de l"équation d"onde à

une dimension est donc la somme d"une onde se propageant dans une direction, et d"une autre onde se propageant dans la direction opposée.

1.2.2 Onde progressive à trois dimensions

À trois dimensions, la coordonnéexdéfinissant la position à laquelle on étudie le phenomène on-

dulatoire est remplacée par un vecteur~rdéfinissant la position dans l"espace par rapport à l"origine.

Par exemple, en coordonnées cartésiennes,~r= (x;y;z). Mais l"onde tridimensionnelle peut se propager

dans une direction différente du vecteur position courante. On doit donc introduire un second vecteur~

indiquant la direction et le sens de propagation de l"onde. La solution de l"équation d"onde prend alors

la forme :A(~r;t) =A(x;y;z;t) =F(ct~:~r) +G(ct+~:~r)(13) Cours d"Optique et Physique des Ondes - 2016/2017 3

Partie 2: ONDES PROGRESSIVES

1.2.3 Onde sphérique

Un cas particulier d"onde se propageant dans les trois dimensions de l"espace est l"onde sphérique.

Soit une fonctionsdu tempstet de l"espace(x;y;z)solution de l"équation d"onde. L"équation d"onde

s"écrit alors : r 2s1c 2@ 2s@t

2= 0(14)

oùr2correspond à l"opérateurlaplacien, etrcorrespond à l"opérateurnabla. Puisquesne dépend que

de la variabler, son laplacien s"écrit, en coordonnées sphériques : r

2s=@2s@r

2+2r @s@r (15) On va ici procéder au changement de variable suivant : u=rs=)8 >>>>>>:@u@r =s+r@s@r 2u@r

2= 2@s@r

+r@2s@r 2 2u@t

2=r@2s@t

2=) r2s=1r

2u@r 2 =)@2s@t 2=1r 2u@t 2(16) On peut donc réécrire l"équation d"onde avec la fonctionu: 2u@r 21c
2@ 2u@t

2= 0(17)

Le fait que l"opérateur différentielr2soit remplacé par une dérivée partielle@2=@r2traduit le passage

d"un problème tridimensionnel à un problème unidimensionnel. On retrouve ici l"équation d"onde à une

dimension, dontuest solution. La fonctionuest donc de la forme donnée par l"équation 12 : u(r;t) =f trc +g t+rc =)s(r;t) =1r f trc +1r g t+rc (18) La fonctionssubit une atténuation géométrique en1=r.

1.3 Structure de l"onde progressive

Sur unesurface d"onde(ou unfront d"onde),f(tx=c)garde la même valeur en tout point, àtfixé

(idem pourg). La géométrie des surfaces d"onde dépend de la géométrie de la source et de sa distance :

- source ponctuelle : surface d"onde sphérique - source linéique : surface d"onde cylindrique - source planaire : onde plane

Le vecteur unitaire~est le vecteur normal à la surface d"onde. À suffisamment grande distance de la

source, quelle que soit la géométrie de la source, les surfaces d"onde peuvent généralement être considérés

comme localement planes. On parle alors deplan d"onde.

Quoi qu"il en soit, il ne faut pas confondre la géométrie des plans d"onde (perpendiculaire au vecteur

~) et la direction du mouvement des particules~ulors de leurs ondulations (ou de toute autre variable

vérifiant l"équation d"onde). Ici, nous avons considéré~u~X, c"est à dire que le mouvement des particules

s"effectue dans la direction(Ox). Il s"agit d"un modelongitudinalde mouvement (Figure 3). Les ondes

acoustiques ou les ondes sismiques de compression (ondesP) partagent cette caractéristique. Mais nous

aurions également pu étudier les vibrationstransverses, pour lesquelles~u~You~u~Z. Les vibrations

d"une corde dans une guitare ou un piano, ou les ondes de cisaillement en sismologie (ondesS) font partie

de cette catégorie.Cours d"Optique et Physique des Ondes - 2016/2017 4

Partie 2: ONDES PROGRESSIVESX(x,t)

X x,t x O Y x,t Y x,t x Z x,t x x xy O y zz Z x,t

Modes transversesMode longitudinalPlan d'onde

Vuequotesdbs_dbs4.pdfusesText_7
[PDF] onde harmonique

[PDF] onde progressive harmonique

[PDF] onde plane electromagnetique

[PDF] onde periodique sinusoidale def

[PDF] difference onde periodique et sinusoidale

[PDF] période spatiale d'une onde

[PDF] definition de la periode spatiale lambda d'une onde progressive sinusoidale

[PDF] periode temporelle definition

[PDF] longueur d'onde d'une onde progressive sinusoïdale

[PDF] attestation conduite vehicule societe

[PDF] radiographie ondes utilisées

[PDF] inventer un quiproquo

[PDF] cours ultrasons niveau 2

[PDF] onde longitudinale

[PDF] onde ultrasonore progressive