[PDF] FONCTION LOGARITHME NEPERIEN (Partie 2)





Previous PDF Next PDF



I. Sens de variation dune fonction ; extréma

on place sur le graphique les points donnés par le tableau de variations et on trace les éventuelles tangentes connues. on complète la courbe par des points 



VARIATIONS DUNE FONCTION

Un tableau de variations résume les variations d'une fonction en faisant apparaître les intervalles où elle est monotone. Méthode : Déterminer graphiquement les 



mathsbps.fr IE2_limites_TSTi2D NOM :

Ex1. On donne le tableau de variations d'une fonction . c) Dresser le tableau de variation complet de la fonction ( avec les limites ).



FONCTION LOGARITHME NEPERIEN (Partie 2)

e x . 6) Courbe représentative. On dresse le tableau de variations de la fonction logarithme népérien : Page 3 



de la 1`ere S `a la TS. Chapitre 4 : Études de fonctions Exercice n?1

Que peut-on en déduire pour (Cf )?. 4. Calculer la fonction dérivée de f et étudier son signe. 5. Dresser le tableau de variations de f. 6 



FONCTION EXPONENTIELLE

Propriété : et. - Propriété démontrée au paragraphe III. -. 4) Courbe représentative. On dresse le tableau de variations de la fonction exponentielle :.



FONCTION DERIVÉE

Soit la fonction f définie sur R par f (x) = x3 +. 9. 2 x2 ?12x +5. 1) Etudier les variations de f et dresser le tableau de variation. 2) Dans repère 



Étudier une fonction trigonométrique

0; ? puis dresser son tableau de variations. 3 Représenter graphiquement f. C dans un repère orthogonal sur [. ] 2 ; 



Variations dune fonction composée

On donne ci dessous le tableau de variation de deux fonctions f et g définies sur R. réflexion et on crée un obstacle didactique pour l'étude complète.



DÉRIVATION (Partie 3)

1) Calculer la fonction dérivée de f. 2) Déterminer le signe de f ' en fonction de x. 3) Dresser le tableau de variations de f.

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr1FONCTION LOGARITHME NEPERIEN (Partie 2) I. Etude de la fonction logarithme népérien Vidéo https://youtu.be/3KLX-ScJmcI 1) Continuité et dérivabilité Propriété : La fonction logarithme népérien est continue sur

0;+∞

. - Admis - Propriété : La fonction logarithme népérien est dérivable sur

0;+∞

et (lnx)'= 1 x . Démonstration : Nous admettons que la fonction logarithme népérien est dérivable sur

0;+∞

. Posons f(x)=e lnx . Alors f'(x)=(lnx)'e lnx =x(lnx)' Comme f(x)=x , on a f'(x)=1 . Donc x(lnx)'=1 et donc (lnx)'= 1 x . Exemple : Dériver la fonction suivante sur l'intervalle

0;+∞

f(x)= lnx x f'(x)= 1 x

×x-lnx×1

x 2 1-lnx x 2

2) Variations Propriété : La fonction logarithme népérien est strictement croissante sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x >0

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr2 3) Convexité Propriété : La fonction logarithme népérien est concave sur

0;+∞

. Démonstration : Pour tout réel x > 0, (lnx)'= 1 x (lnx)''=- 1 x 2 <0 donc la dérivée de la fonction ln est strictement décroissante sur

0;+∞

et donc la fonction logarithme népérien est concave sur cet intervalle. 4) Limites aux bornes Propriété :

lim x→+∞ lnx=+∞ et lim x→0 x>0 lnx=-∞

On peut justifier ces résultats par symétrie de la courbe représentative de la fonction exponentielle. 5) Tangentes particulières Rappel : Une équation de la tangente à la courbe

C f au point d'abscisse a est : y=f'(a)x-a +f(a) . Dans le cas de la fonction logarithme népérien, l'équation est de la forme : y= 1 a x-a +lna . - Au point d'abscisse 1, l'équation de la tangente est y= 1 1 x-1 +ln1 soit : y=x-1 . - Au point d'abscisse e, l'équation de la tangente est y= 1 e x-e +lne soit : y= 1 e x

. 6) Courbe représentative On dresse le tableau de variations de la fonction logarithme népérien :

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr3 x 0 +∞

ln'(x) lnx

Valeurs particulières :

ln1=0 lne=1

Méthode : Etudier les variations d'une fonction Vidéo https://youtu.be/iT9C0BiOK4Y 1) Déterminer les variations de la fonction f définie sur

0;+∞

par f(x)=3-x+2lnx . 2) Etudier la convexité de la fonction f. 1) Sur

0;+∞

, on a f'(x)=-1+ 2 x 2-x x . Comme x>0 f'(x) est du signe de 2-x . La fonction f est donc strictement croissante sur 0;2 et strictement décroissante sur

2;+∞

. On dresse le tableau de variations :

YvanMonka-AcadémiedeStrasbourg-www.maths-et-tiques.fr4x 0 2 +∞

f'(x) ⎪⎪ + 0 - f(x)

1+2ln2

f(2)=3-2+2ln2=1+2ln2

2) Sur

0;+∞

, on a f''(x)= -1×x-2-x ×1 x 2 -x-2+x x 2 2 x 2 <0 . La fonction f' est donc décroissante sur

0;+∞

. On en déduit que la fonction f est concave sur

0;+∞

. II. Positions relatives Vidéo https://youtu.be/RA4ygCl3ViE Vidéo https://youtu.be/0hQnOs_hcss Propriété : La courbe représentative de la fonction exponentielle est au-dessus de la droite d'équation

y=x . La droite d'équation y=x

est au-dessus de la courbe représentative de la fonction logarithme népérien. Démonstration : - On considère la fonction f définie sur

par f(x)=e x -x f'(x)=e x -1 f'(x)=0 ⇔e x -1=0 ⇔e x =1 ⇔x=0

On a également

f(0)=e 0 -0=1>0 . On dresse ainsi le tableau de variations : x -∞

0 +∞

f'(x) - 0 + f(x)

1 On en déduit que pour tout x de

, on a f(x)=e x -x>0 soit e x >x - On considère la fonction g définie sur

0;+∞

par g(x)=x-lnx g'(x)=1- 1 x x-1 x . Comme x>0 f'(x) est du signe de x-1 . On a également g(1)=1-ln1=1>0

. On dresse ainsi le tableau de variations : x 0 1 +∞

g'(x) - 0 + g(x)

1 On en déduit que pour tout x de

0;+∞

, on a g(x)=x-lnx>0 soit x>lnx

. Horsducadredelaclasse,aucunereproduction,mêmepartielle,autresquecellesprévuesàl'articleL122-5ducodedelapropriétéintellectuelle,nepeutêtrefaitedecesitesansl'autorisationexpressedel'auteur.www.maths-et-tiques.fr/index.php/mentions-legales

quotesdbs_dbs19.pdfusesText_25
[PDF] Tableau de variation d'une fonction f

[PDF] Tableau de variation d'une fonction, besoin d'aide!

[PDF] Tableau de variation d'une valeur absolue

[PDF] tableau de variation d'un quotient

[PDF] tableau de variation dune fonction affine

[PDF] tableau de variation dune fonction du second degré

[PDF] tableau de variation d'une fonction exercice corrigé

[PDF] tableau de variation dune fonction exponentielle

[PDF] tableau de variation d'une fonction inverse

[PDF] tableau de variation dune fonction polynome du second degré

[PDF] tableau de variation d'une fonction racine carrée

[PDF] tableau de variation d'une fonction rationnelle

[PDF] tableau de variation d'une fonction second degré

[PDF] tableau de variation d'une fonction seconde

[PDF] Tableau de variation de