[PDF] [PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on 



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 On retrouve cette variable muette lorsque l'on veut calculer une somme à l'aide d'un algorithme. (boucle Pour).



Sommes produits

https://www.normalesup.org/~glafon/carnot10/recurrence.pdf



Sommes et produits

S'il vous reste un indice dans l'expression après le calcul de la somme c'est que vous vous êtes trompé2. Exemple. Chercher l'erreur : n. ? n=0.



Calcul Algébrique

Voici un enchaînement d'égalités montrant que la somme des puissances de 2 de 20 jusqu'à 2n vaut (2n+1 ? 1) (c'est un cas particulier d'une formule à 



sommes.pdf

n'a pas d'autre existence en dehors de permettre le calcul de la somme). présentée avec le symbole sigma n. ? k=1 xk sous sa forme sans sigma.



Utilisation du symbole ?

symbole sigma. Voici un exercice d'application : Exercice 3 : Calculer chacune des sommes suivantes ou en donner la meilleure expression possible : Somme 



Calcul de sommes et de produits

1.1.1 Définition et premiers calculs. Définition 1. (Symbole "Sigma"). Soit p n ? N



Cours de mathématiques - Exo7

Pour un entier n fixé programmer le calcul de la somme Sn = 13 + 23 + 33 + ··· + n3. 2. Définir une fonction qui pour une valeur n renvoie la somme ?n = 1 



Séries

Le fait de calculer la somme d'une série à partir de k = 0 est purement conventionnel. Par contre si elle est convergente



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Soit I un sous-ensemble fini de N la somme de tous les termes ai i décrivant I sera notée C Exemples : Calculer la somme : Sn =



[PDF] LE SYMBOLE DE SOMMATION

Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes Ce symbole est généralement accompagné d'un indice que l'on 



[PDF] sommespdf - Pascal Ortiz

Plus géné- ralement exprimer à l'aide du symbole sigma la somme Sn des n premiers entiers se terminant par 7 puis calculer Sn On observera qu'un entier se 



[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] Sommes produits récurrence - Normale Sup

18 sept 2010 · Exemple 1 : Calcul de la somme des entiers • Nous allons démontrer par récurrence que la propriété Pn : i=n ?



[PDF] Calcul Algébrique

Ce chapitre est consacré à la manipulation de formules algébriques constituées de variables formelles de réels ou de complexes



[PDF] Thème 13: Le symbole de sommation ?

Exercice 13 3: Écrire les sommes suivantes sans le signe ? et calculer cette somme lorsque c'est possible a) S1 = 1 i i=1 4 ?



[PDF] CALCULS ALGÉBRIQUES Sommes et produits finis

Exercice 5 : Somme de termes en progression arithmétique — Soit (uk) une suite de nombres réels en progression arithmétique Soit(m n) ? N2 tel que m



Manipulation de sommes à laide du symbole ? - Math-OS

11 oct 2017 · La manipulation de sommes via le symbole \Sigma (sigma) repose sur un petit nombre de règles Cet article a pour objet de les énumérer et 



[PDF] Chapitre IV : Calculs algébriques I La somme ? et le produit ?

Exemple 12 : Calculer la somme des nombres impairs de 1 à 99 en utilisant une suite arithmétique Soient (un)n?N une suite de réels ou de complexes et q ? K

  • Comment calculer la somme Sigma ?

    Le symbole ? (sigma) s'utilise pour désigner de manière générale la somme de plusieurs termes. Ce symbole est généralement accompagné d'un indice que l'on fait varier de façon à englober tous les termes qui doivent être considérés dans la somme.
  • Comment faire le Sigma ?

    Typez 03c3 ou 03C3 et appuyez sur Alt+C pour insérer le symbole sigma : ?
  • On l'obtient simplement en additionnant l'ensemble des valeurs et en divisant cette somme par le nombre de valeurs. Ce calcul peut être fait à partir des données brutes ou d'un tableau de fréquences.
DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑quotesdbs_dbs4.pdfusesText_7
[PDF] somme 1/n(n+1)

[PDF] comment calculer la somme d'une série numérique

[PDF] comment calculer la somme d'une série

[PDF] somme double i/j

[PDF] garam

[PDF] exercice corrigé rdm portique

[PDF] exercice rdm poutre corrigé

[PDF] exercice portique hyperstatique

[PDF] exercices corrigés rdm charges réparties

[PDF] exercice corrigé portique hyperstatique

[PDF] exercice corrigé poutre hyperstatique

[PDF] calcul de structure cours

[PDF] exercice corrigé portique isostatique

[PDF] methode des forces exercices corrigés pdf

[PDF] portique hyperstatique corrigé