[PDF] fic00056.pdf Pour quelles valeurs de a





Previous PDF Next PDF



LES DÉTERMINANTS DE MATRICES

7- Expansion par cofacteurs - méthode de calcul des déterminants . Déterminants de matrices carrées de dimensions 4x4 et plus .



Untitled

8 mars 2018 Exercice 20 – Soit M la matrice de M3(R) définie par : M =... 1 0 -1. -2 3 4. 0 1 1... . 1) Calculer le déterminant de M ...



Rang des matrices

On va en profiter pour les passer en revue. Page 6. R`egles de calcul du rang des syst`emes de vecteurs.



Matrice et application linéaire

Comment calculer le rang d'une matrice ou d'un système de vecteurs ? (x1 x2



fic00056.pdf

Pour quelles valeurs de a la matrice A est-elle diagonalisable ? Expliquer sans calcul



les matrices sur Exo7

La matrice (de taille n × p) dont tous les coefficients sont des zéros est appelée la matrice nulle et est notée 0np ou plus simplement 0. Dans le calcul 



Rappel. Le polynôme caractéristique dune matrice carrée A est det

17 déc. 2012 Comment calculer les valeurs après 3 ans après 10 ans ? Page 14. Critères de diagonalisabilité. Théorème 1 (facile) Si toutes les racines du ...



MVA101 – CNAM Paris- Nathalie Zanon ED 11 : Matrices et

ED 11 : Matrices et déterminants. Exercice 1 : déterminant 4x4. Calculer de deux manières différentes le déterminant d'ordre 4 suivant:.



chapitre 7 : Trigonalisation et diagonalisation des matrices

calcul des puissances d'une matrice diagonalisable et la résolution des syst`emes matrice tels que sa trace et son déterminant





[PDF] LES DÉTERMINANTS DE MATRICES

3- Calcul du déterminant pour une matrice Déterminants de matrices carrées de dimensions 4x4 et plus 8



Matrice : astuces simple pour calculer déterminant 4x4 5x5 nxn avec

24 mai 2016 · n'oublie pas de télécharger notre application mobile mots touchent le coeur  Durée : 16:32Postée : 24 mai 2016



[PDF] Calculs de déterminants - Exo7 - Exercices de mathématiques

Nous allons voir différentes méthodes pour calculer les déterminants Première méthode Règle de Sarrus Pour le matrice 3×3 il existe une formule qui 



[PDF] Déterminants - Exo7 - Cours de mathématiques

Le déterminant permet de savoir si une matrice est inversible ou pas et de façon plus générale joue un rôle important dans le calcul matriciel et la 



Méthodes de calcul des déterminants [Calcul matriciel]

Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale



[PDF] Chapitre 6 Déterminant dune matrice carrée

Ca sert à calculer l'inverse de la matrice (si elle existe) résoudre un système sans faire des échelonnements tester Formule pour la matrice inverse



Déterminant dune Matrice 2x2 3x3 4x4 NxN - Calculer Det en Ligne

Comment calculer le déterminant d'une matrice non carré ? Quelle est la formule de calcul de déterminant d'une matrice d'ordre n ? Comment calculer le 



[PDF] Nathalie Zanon ED 11 : Matrices et déterminants Exercice 1

MVA101 – CNAM Paris- Nathalie Zanon ED 11 : Matrices et déterminants Exercice 1 : déterminant 4x4 Calculer de deux manières différentes le déterminant 



[PDF] 2 Déterminants - Apprendre-en-lignenet

La formule pour calculer un déterminant d'ordre 3 est difficile à retenir La règle de Sarrus permet d'éviter de l'apprendre par cœur On recopie sous le 

  • Comment calculer le déterminant d'une matrice 4 ?

    Le déterminant d'une matrice diagonale ou triangulaire (supérieure ou inférieure) est égal au produit des termes de la diagonale principale. Comme pour les déterminants d'ordre 2, la valeur du déterminant est égale au produit des termes de la diagonale principale.
  • Quel est le meilleur méthode pour calculer le déterminant d'une matrice ?

    Le déterminant se calcule en multipliant les deux termes de la diagonales : a x d, puis les deux autres : b x c. On soustrait alors, ce qui donne det(A) = a x d – b x c. Rien de bien compliqué, il faut juste connaître la formule Autre cas particulier très simple : les matrices diagonales et triangulaires.
  • Comment calculer le rang d'une matrice 4x4 ?

    Le rang d'une matrice est égal au nombre de ses lignes sauf si l'une d'entre elles est combinaison linéaire des autres.
  • Le déterminant d'une matrice est égal à celui de sa transposée : si M ? Mn(R), alors det(M) = det(tM).
fic00056.pdf

Enoncés et corrections : Sandra Delaunay

Exo7

Sujets de l"année 2006-2007

1 Devoir à la maison

Exercice 1Soita2R, notonsAla matrice suivante

A=0 1 a1+a

On définit une suite(un)n2N, par la donnée deu0etu1et la relation de récurrence suivante, pourn2N

u n+2= (1+a)un+1aun 1. Pour quelles v aleursde ala matriceAest-elle diagonalisable ? 2.

Lorsque Aest diagonalisable, calculerAnpourn2N.

3. On suppose Adiagonalisable. On noteUnle vecteurUn=un u n+1 , exprimerUn+1en fonction deUnet deA, puisUnen fonction deU0et deA.

SoitAla matrice deM3(R)suivante :

A=0 @0 1 0 4 4 0

2 1 21

A 1.

La matrice Aest-elle diagonalisable ?

2. Calculer (A2I3)2, puis(A2I3)npour toutn2N. En déduireAn. Soitfl"endomorphisme deR4dont la matrice dans la base canonique est A=0 B

B@833 1

6 3 21

26 7 102

0 0 0 21

C CA: 1. Démontrer que 1 et 2 sont des v aleurspropres de f. 2.

Déterminer les v ecteurspropres de f.

3. Soit ~uun vecteur propre defpour la valeur propre 2. Trouver des vecteurs~vet~wtels que f(~v) =2~v+~uetf(~w) =2~w+~v: 1

4.Soit ~eun vecteur propre defpour la valeur propre 1. Démontrer que(~e;~u;~v;~w)est une base deR4.

Donner la matrice defdans cette base.

5.

La matrice Aest-elle diagonalisable ?

Exercice 4SoitAla matrice suivante

A=0 @3 01 2 4 2

1 0 31

A 1. Déterminer et f actoriserle polynôme caractéristique de A. 2.

Démontrer que Aest diagonalisable et déterminer une matriceDdiagonale et une matricePinversible

tellesA=PDP1. 3. Donner en le justifiant, mais sans calcul, le polynôme minimal de A. 4.

Calculer Anpourn2N.

SoitAla matrice suivante

A=1 1 2 1 1. Calculer le polynôme caractéristique et déterminer les v aleurspropres de A. 2. On note l1>l2les valeurs propres deA,E1etE2les sous-espaces propres associés. Déterminer une

base(~e1;~e2)deR2telle que~e12E1,~e22E2, les deux vecteurs ayant des coordonnées de la forme(1;y).

3.

Soit ~xun vecteur deR2, on note(a;b)ses coordonnées dans la base(~e1;~e2). Démontrer que, pourn2N,

on a A n~x=aln1~e1+bln2~e2 4.

Notons An~x=an

b n dans la base canonique deR2. Exprimeranetbnen fonction dea,b,l1etl2. En déduire que, sia6=0, la suitebna ntend versp2 quandntend vers+¥. 5.

Expliquer ,sans calcul, comment obtenir à partir des questions précédentes une approximation de

p2 par une suite de nombres rationnels. SoitP(X)un polynôme deC[X], soitAune matrice deMn(C). On noteBla matrice :B=P(A)2Mn(C). 1. Démontrer que si ~xest un vecteur propre deAde valeur proprel, alors~xest un vecteur propre deBde valeur propreP(l). 2

2.Le b utde cette question est de démontrer que les v aleurspropres de Bsont toutes de la formeP(l), avec

lvaleur propre deA. Soitm2C, on décompose le polynômeP(X)men produit de facteurs de degré 1 :

P(X)m=a(Xa1)(Xar):

(a)

Démontrer que

det(BmIn) =andet(Aa1In)det(AarIn): (b) En déduire que si mest valeur propre deB, alors il existe une valeur propreldeAtelle que m=P(l). 3. On note SAl"ensemble des valeurs propres deA, démontrer que S

B=fP(l)=l2SAg:

4. Soient l1;:::;lrles valeurs propres deAet soitQ(X)le polynôme :

Q(X) = (Xl1)(Xlr);

on noteCla matriceC=Q(A). (a)

Démontrer que SC=f0g.

(b) En déduire que le polynôme caractéristique de Cest(1)nXnet queCn=0.

Exercice 7SoitAla matrice

A=0 @11 0 1 01

1 0 21

A etfl"endomorphisme deR3associé. 1. F actoriserle polynôme caractéristique de A. 2. Déterminer les sous-espaces propres et caractéristiques de A. 3. Démontrer qu"il e xisteune base de R3dans laquelle la matrice defest B=0 @1 1 0 0 1 1

0 0 11

A et trouver une matricePinversible telle queA=PBP1. 4. Ecrire la décomposition de Dunford de B(justifier). 5.

Pour t2R, calculer exptB.

6. Donner les solutions des systèmes dif férentielsY0=BYetX0=AX. 3

1.On note (~e1;~e2;~e3)la base canonique deR3. SoitAla matrice

A=0 @1 0 0 0 2 0

0 0 31

A Donner sans calcul les valeurs propres deAet une base de vecteurs propres. 2. On cherche à déterminer ,s"il en e xiste,les matrices Btelles que expB=A. (a)

Montrer que si A=expB, alorsAB=BA.

(b) En déduire que la base (~e1;~e2;~e3)est une base de vecteurs propres de B. (c) Déterminer toutes les matrices B2M3(R)telles que expB=A. Justifier. 3.

Soit la matrice C,

C=0 @0 1 0 0 0 1

0 0 01

A Montrer qu"il n"existe pas de matriceD2M3(R)telle queC=expD. 4. Calculer le polynôme caractéristique et le polynôme minimal de C. 5. Supposons qu"il e xisteune matrice E2M3(R)telle queE2=C. NotonsQE(X)son polynôme minimal etQC(X)le polynôme minimal deC. (a)

Montrer que QE(X)diviseQC(X2).

(b)

En déduire que E3=0 et queC2=0.

(c) Déduire de ce qui précède qu"il n"e xistepas de matrice Etelle queE2=C. 6. Soient FetGdes matrices deM3(R)telles queF=expG. Démontrer que pour toutn2N, il existe une matriceHtelle queHn=F.

Exercice 9Soitm2R, etAla matrice

A=0 @1+m1+m1 mm1 m m1 01 A 1. F actoriserle polynôme caractéristique de Aet montrer que les valeurs propres deAsont1 et 1. 2.

Pour quelles v aleursde mla matrice est-elle diagonalisable ? (justifier). Déterminer suivant les valeurs

demle polynôme minimal deA(justifier). 1. Donner unexempledematricedansM2(R), diagonalisablesurCmaisnondiagonalisablesurR(justifier). 2. Donner un e xemplede matrice dans M2(R)non diagonalisable, ni surC, ni surR(justifier). 4

SoitAla matrice suivante :

A=0 1 1 0 1.

Diagonaliser la matrice A.

2.

Exprimer les solutions du système dif férentielX0=AXdans une base de vecteurs propres et tracer ses

trajectoires.

SoitAla matrice

A=0 @3 2 4 1 31 2131
A etfl"endomorphisme deR3associé. 1. F actoriserle polynôme caractéristique de A. 2. Déterminer les sous-espaces propres et caractéristiques de A. 3. Démontrer qu"il e xisteune base de R3dans laquelle la matrice defest B=0 @1 0 0 0 2 1

0 0 21

A et trouver une matricePinversible telle queA=PBP1. 4. Ecrire la décomposition de Dunford de B(justifier). 5.

Calculer e xpB.

Correction del"exer cice1 NSoita2R, notonsAla matrice suivante A=0 1 a1+a

On définit une suite(un)n2N, par la donnée deu0etu1et la relation de récurrence suivante, pourn2N

u n+2= (1+a)un+1aun

1.Pour quelles valeurs de a la matrice A est-elle diagonalisable ?

Calculons le polynôme caractéristiquePA(X):

P

A(X) =X1

a1+aX =X(1+aX)+a=X2(1+a)X+a: La matriceAest diagonalisable surRsi le polynômePAadmet deux racines distinctes dansR. En effet,

siPAadmet une racine doubleretAdiagonalisable, alors l"endomorphisme de matriceAest égal àrIdE,

ce qui n"est pas le cas. Calculons donc le discriminant du polynôme caractéristique.

D= (1+a)24a=1+a2+2a4a=1+a22a= (1a)2:

Ainsi la matriceAest diagonalisable pour touta6=1.

2.Lorsque A est diagonalisable, calculons Anpour n2N.

LorsqueAest diagonalisable, il existe une matrice inversiblePet une matrice diagonaleDtelles que A=PDP1, ainsi pour toutn2N, on aAn=PDnP1. Déterminons les matricesPetD. Pour cela calculons les deux valeurs propres deA, ce sont les racines du polynômePA, on a donc l

1=1+a+1a2

=1 etl2=1+a1+a2 =a: Déterminons maintenant des vecteurs propres associés aux valeurs propres 1 eta. On cherche des vecteurs~e1et~e2tels queA~e1=~e1etA~e2=a~e2. 0 1 a1+a xquotesdbs_dbs29.pdfusesText_35
[PDF] determinant matrice inversible

[PDF] determinant matrice exercices corrigés

[PDF] determinant matrice 2x3

[PDF] calcul du determinant dune matrice pdf

[PDF] déterminant matrice triangulaire

[PDF] forme canonique de commandabilité

[PDF] représentation d'état exercices corrigés pdf

[PDF] passage fonction de transfert représentation d'état

[PDF] forme modale automatique

[PDF] forme compagne de commande

[PDF] matrice de transfert automatique

[PDF] diagonale d'un carré propriété

[PDF] prix ecran projecta

[PDF] format 10x15 correspondance

[PDF] meilleur ecran videoprojecteur