[PDF] Recueil dexercices corrigés de première année ECS Table des





Previous PDF Next PDF



LIMITES – EXERCICES CORRIGES ( )

LIMITES – EXERCICES CORRIGES. Exercice n°1. Déterminer la limite éventuelle en + ?de chacune des fonctions suivantes :.



LIMITES – EXERCICES CORRIGES ( )

LIMITES – EXERCICES CORRIGES. Exercice n°1. Déterminer la limite éventuelle en + ?de chacune des fonctions suivantes :.



Développements limités

Développements limités. Corrections d'Arnaud Bodin. 1 Calculs. Exercice 1. Donner le développement limité en 0 des fonctions : 1. cosx·expx à l'ordre 3.



Feuille dexercices 10 Développements limités-Calculs de limites

Exercice 4. Calculer les limites suivantes (sans présupposer leur existence!). ) lim. ?0.



Limites – Corrections des Exercices

1 ? x devient arbitrairement grand dans les positifs. —. Exercice no 2. Déterminer les limites suivantes aux valeurs demandées. (1). a. lim.



Limites asymptotes EXOS CORRIGES

M. CUAZ http://mathscyr.free.fr. Page 1/18. LIMITES – EXERCICES CORRIGES. Exercice n°1. Déterminer la limite éventuelle en + ? de chacune des fonctions 



Limites de fonctions

Ce qui exprime bien que la limite de f en +? est l. Correction de l'exercice 2 ?. Généralement pour calculer des limites faisant intervenir des sommes de 



Limite continuité

dérivabilité



Cours danalyse 1 Licence 1er semestre

4.2 Propriétés de la limite d'une fonction . 7 Corrigé des exercices ... on a un formulaire qui donne les développements limités des fonctions usuelles.



Recueil dexercices corrigés de première année ECS Table des

c) Les suites (S2n) et (S2n+1) convergent vers une même limite donc la suite (Sn) converge (vers cette limite commune). 1.4 Fonctions usuelles. Exercice 28.

Recueil d"exercices corrigés de première année ECS1 ANALYSETable des matières

1 Analyse 1

1.1 Sommes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Suites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Séries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Fonctions usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Convexité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Intégration, primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.7 Limites, continuité, dérivabilité . . . . . . . . . . . . . . . . . . . . . . . 14

1.8 Formules de Taylor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Algèbre 19

2.1 Dénombrements, applications et ensembles . . . . . . . . . . . . . . . . . 19

2.2 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Polynômes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Espaces vectoriels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Matrices et systèmes linéaires . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Applications linéaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Probabilités 30

3.1 Probabilités élémentaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Variables aléatoires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Informatique 33Ces exercices courts, pour la plupart donnés en colles en première année, constitue

une collection quasiment exhaustive des propriétés et méthodes que doit maîtriser un

étudiant en fin de première année. Il constitue une base de révision pour l"étudiant de

seconde année.

NicolasMaillard

colasmaillard@free.fr1 Analyse

1.1 SommesExercice1.1.Démontrer par récurrence surnla formule donnantnX

k=0k 2.

2.En calculant de deux façonsnX

k=0 (k+ 1)

4k4, retrouver la formule donnant

n X k=0k

3.Correction n

o1.

1.Pourn2N;P(n): "nX

k=0k

2=n(n+ 1)(2n+ 1)6

2.Par télescopagenX

k=0 (k+ 1)4k4= (n+ 1)4, et en développant : (k+ 1)4k4== 4k3+ 6k2+ 4k+ 1, (n+ 1)4= 4nX k=0k

3+ 6nX

k=0k

2+ 4nX

k=0k+nX k=01 (n+ 1)4= 4nX k=0k

3+n(n+ 1)(2n+ 1) + 2n(n+ 1) +net il n"y a plus qu"à isoler

n X k=0k

3==n2(n+ 1)24

.Exercice2.Calculer nX i=10 nX j=1max(i;j)1 A .Correction n o2.nX i=1 nX j=1max(i;j)! =nX i=1 iX j=1i+nX j=i+1j! =nX i=1 ii+n(n+ 1)2 i(i+ 1)2 nX i=1 i22 i2 +n(n+ 1)2 =12 n(n+ 1)(2n+ 1)6 n(n+ 1)2 +n2(n+ 1)

Lycée HenriPoincaré1/35lo

1.2 SuitesRecueil d"exercices corrigés de première année ECS1 ANALYSE=

n(n+ 1)(2n+ 1)3 + 6n)12 =n(n+ 1)(8n2)12 =n(n+ 1)(4n1)6 Exercice3.Soitdetfdeux entiers naturels tels qued6f(d=début etf=fin!).

1. a)Montrer que :8i2[[d;f]];

i d! i+ 1 d+ 1! i d+ 1! b)En déduirefX i=d i d!

2.Retrouver ce résultat en raisonnant par récurrence surf.Correction n

o3.

1. a)Formule de Pascal :

i+ 1 d+ 1! i d! i d+ 1! b)Télescopage : fX i=d i d! =fX i=d i+ 1 d+ 1! i d+ 1!! f+ 1 d+ 1! d d+ 1! f+ 1 d+ 1!

1.2 SuitesExercice4.On considère la suite(un)n2Ndéfinie par

u

0= 2,u1= 5et8n2N; un+2= 5un+16un.

Calculerunen fonction den.Correction n

o4.

Suite récurrente linéaire d"ordre 2, racines de l"équation caractéristique :2et3.8n2N;un=

2 n+ 3n.Exercice5.On considère la suite(un)n2Ndéfinie par u

0= 2,u1=2 +p3

2 et8n2N; un+2=un+1un.

Calculerunen fonction den.Correction n

o5. Suite récurrente linéaire d"ordre 2, racines de l"équation caractéristique : 1ip3 2 =ei=3:9(a;b)2R;8n2N; un=asin(n=3) +bcos(n=3) u

0= 2)b= 2,u1=2 +p3

2 )a= 1:8n2N;un= sin(n=3) + 2cos(n=3).Exercice6.On considère la suite(un)n2Ndéfinie par u

0=1,u1= 4et8n2N; un+2= 4un+14un.

Calculerunen fonction den.Correction n

o6.

Suite récurrente linéaire d"ordre 2, unique racine de l"équation caractéristique :2:9(a;b)2

R;8n2N; un= 2n(an+b)

u

0=1)b=1,u1= 4)a= 3:8n2N;un= 2n(3n1).Exercice7.Étudier la suiteudéfinie paru0= 0,u1= 1et

8n2N; un+2= 4un+14un+ 2.

On pourra utiliser une suite auxiliaire du type(unCte)n2NoùCteest une constante adéquate.Correction n o7.

Soit2Ret, pour toutndeN,vn=un. Alors :8n2N;

u n+2= 4un+14un+ 2,vn+2+= 4vn+1+ 44vn4+ 2 ,vn+2= 4vn+14vn+ (2)

En prenant= 2,vvérifie une relation de récurrence linéaire d"ordre 2, d"équation caracté-

ristiquex24x+ 4 = 0dont la racine double est2. Il existe(a;b)2R2tel que

8n2N; vn= 2n(an+b), avecv0=u0+ 2 = 2etv1=u1+ 2 = 3.

On trouve alors :8n2N; vn= 2n(2n=2) = 2n1(4n),

puis :8n2N; un= 2n1(4n)2.Exercice8.Étudier la suiteudéfinie paru0= 1,u1= 0et

8n2N; un+2=un+1+ 2un+ 3.

On pourra utiliser une suite auxiliaire du type(unn)n2Noùest une constante adéquate.Correction n o8.

Soit2Ret, pour toutndeN,vn=unn. Alors :8n2N;

u n+2= 4un+14un+ 2,vn+2+ (n+ 2)=vn+1(n+ 1)+ 2vn+ 2n+ 3 ,vn+2=vn+1+ 2vn+ (3)

Lycée HenriPoincaré2/35lo

1.2 SuitesRecueil d"exercices corrigés de première année ECS1 ANALYSEEn prenant= 3,vvérifie une relation de récurrence linéaire d"ordre 2, d"équation caracté-

ristiquex2+x2 = 0dont les racines sont2et1. Il existe(a;b)2R2tel que

8n2N; vn= (2)na+b, avecv0=u0= 1etv1=u13 =3.

On trouve alors :8n2N; vn=43

(2)n13 =13 (2)n+21, puis :8n2N; un=13 (2)n+21+ 3n.Exercice9.Soitvla suite définie par v

0=eet8n2N; vn+1=ev2n:

1.Montrer quevest strictement positive et strictement croissante.

2.Montrer quevdiverge et quelimn!+1vn= +1.

3.Pour toutndeN, on pose :un= ln(vn). Exprimerunen fonction denet en

déduirevnen fonction den. Retrouver les réponses aux questions précédentes

à l"aide de cette expression.Correction n

o9.

1.On montre par récurrence que :8n2N; vn>e.

Du coup :8n2N;vn+1v

n=evn>e2>1doncvcroît.

2.On peut montrer par récurrence que :8n2N; vn>en, et par comparaison,

limn!+1vn= +1. On peut aussi raisonner par l"absurde. Supposonsvconvergent, de limite`. Alors limn!+1vn+1=`etlimn!+1ev2n=e`2. Par unicité de la limite :`=e`2. `=e`2,`(1e`) = 0,(`= 0ou`= 1=e). Or :8n2N;vn>e)`>e, donc`6= 0et`6= 1=e. Contradiction : doncvdiverge, et commevest croissante,vdiverge vers+1.

3.uvérifie la relation de récurrence :8n2N;un+1= ln(ev2n) = 1+2un: c"est une suite

arithmético-géométrique.

Avecu0= 1, on obtient :8n2N;un= 2n+11.

Alors :8n2N;vn= exp(2n+11)!n!+1+1.Exercice10.On considère la suite(un)n2Ndéfinie par u

0= 1et8n2N; un+1= ln(un+ 1).

1.Montrer que la suite(un)n2Nest bien définie. et que :8n2N; un>0.

2.Montrer que la suite(un)n2Nest décroissante.

3.Justifier la suite(un)n2Nest convergente et déterminer sa limite.Correction n

o10.

1.Par récurrence surn2N:P(n): "unexiste etun>0».

2.Par récurrence :u1= ln(2)6u0, etun6un1)un+16un1+1)ln(un+1)6

ln(un1+ 1))un+16un. Variante :un+1un= ln(un+ 1)unet on montre (en l"étudiant) que la fonction x7!ln(x+ 1)xest négative sur]0; +1[.

3.uest décroissante et minorée donc converge, et commeuest positive, sa limite`est

positive (ou nulle). Commelimn!+1un+1=`etlimn!+1ln(un+ 1) = ln(`+ 1),`= ln(`) + 1. L"étude dex7!ln(x+ 1)xsur[0; +1[montre que`= 0est l"unique solution de `= ln(`) + 1. Donc`= 0.Exercice11.On considère la suite(un)n2Ndéfinie par u

0= 0et8n2N; un+1=pu

n+ 2.

1.Montrer que la suite(un)n2Nest bien définie. et que :8n2N;06un62.

2.Étudier la variation de la suite(un)n2N.

3.Justifier la suite(un)n2Nest convergente et déterminer sa limite.Correction n

o11.

1.Par récurrence surn2N:P(n): "unexiste et2>un>0».

2.Par récurrence :u1=p2>u0, etun>un1)un+ 2>un1+ 2)pu

n+ 2>pu n1+ 2)un+1>un.

3.uest croissante et majorée donc converge, et comme06u62, sa limite`est positive

et inférieure à2.

Commelimn!+1un+1=`etlimn!+1pu

n+ 2 =p`+ 2,`=p`+ 2.

`=p`+ 2,`2`2 = 0,(`= 2ou`=1), or`>0, donc`= 2.Exercice12.Étudier la suiteudéfinie paru0= 1et8n2N; un+1=unu

2n+ 1.Correction n

o12. Par récurrence, on montre queunest défini et strictement positif pour toutndeN.

8n2N;un+1u

quotesdbs_dbs1.pdfusesText_1
[PDF] exercices corrigés limites continuité dérivabilité

[PDF] exercices corrigés limites de fonctions terminale s pdf

[PDF] exercices corrigés limites de suites terminale s

[PDF] exercices corrigés limites et continuité terminale s

[PDF] exercices corrigés logique mathématique pdf

[PDF] exercices corrigés loi de newton terminale s

[PDF] exercices corrigés macroéconomie l2

[PDF] exercices corrigés maintenance et fiabilité

[PDF] exercices corriges mecanique du solide

[PDF] exercices corrigés mécanique lagrangienne

[PDF] exercices corrigés mécanique quantique oscillateur harmonique

[PDF] exercices corrigés méthode du gradient conjugué

[PDF] exercices corrigés methodes itératives

[PDF] exercices corrigés microéconomie 1ère année

[PDF] exercices corrigés microéconomie équilibre général