[PDF] Géométrie dans lespace - Lycée dAdultes





Previous PDF Next PDF



Quelques méthodes de géométrie dans lespace :

Quelques méthodes de géométrie dans l'espace : ?. Pour montrer que deux droites (AB) et (CD) sont parallèles: Cela revient à montrer que les vecteurs 



Méthodes de géométrie dans lespace Déterminer une équation

Méthodes de géométrie dans l'espace. Déterminer une équation cartésienne de plan Un vecteur est normal au plan s'il est orthogonal au plan.



Géométrie dans lespace - Lycée dAdultes

26 jui. 2013 J. K. L. M. PAUL MILAN. 5. TERMINALE S. Page 6. 1 DROITES ET PLANS. On réitère cette opération pour la face gauche ADHE et la face du dessous ...



1 METHODES DE GEOMETRIE ANALYTIQUE DANS LESPACE

Montrer que (2; ?1; ?3) est un vecteur normal à (ABC). On montre que est orthogonal à deux vecteurs non colinéaires du plan soit par exemple à et à . - On 



FicheBacS 11b Terminale S Géométrie dans lespace

3° b) Montrons que le triangle ABC est un triangle rectangle isocèle en A. — Montrons que ABC est rectangle en A. 1 ère méthode. On calcule les longueur AB AC 



Méthode pour démontrer en géométrie dans lespace 1) Incidence

?Pour démontrer que deux droites sont parallèles ou sécantes il faut d'abord montrer qu'elles sont coplanaires. Il s'agit de trouver un plan contenant ces 



Untitled

Premières Scientifiques' voici celle destinée aux élèves de Terminales sances de la géométrie de Première géométrie plane et géométrie dans l'espace ...



VECTEURS DROITES ET PLANS DE LESPACE

Le cours sur les bases de la géométrie dans l'espace : https://youtu.be/ Méthode : Exprimer un vecteur comme combinaisons linéaires de vecteurs.



GEOMETRIE DANS LESPACE

alors ? est parallèle aux droites d et d'. Page 6. 6 sur 8. Yvan Monka – Académie de Strasbourg – www.maths-et 



FICHE GEOMETRIE DANS L ESPACE

Terminale S. Michelle Froeliger / Jean Pierre FICHE n°12 : GEOMETRIE DANS L'ESPACE ... S= 2 a = avec a? . Si 0 a >. S= RESOLUTION DE L EQUATION 2.



[PDF] Géométrie dans lespace - Lycée dAdultes

26 jui 2013 · Théorème 6 : Si deux droites sont parallèles alors toute droite orthogonale à l'une est orthogonale à l'autre Remarque : La démonstration est 



[PDF] Quelques méthodes de géométrie dans lespace :

Quelques méthodes de géométrie dans l'espace : ? Pour montrer que deux droites (AB) et (CD) sont parallèles: Cela revient à montrer que les vecteurs 



[PDF] FicheBacS 11b Terminale S Géométrie dans lespace - Logamathsfr

On calcule les longueur AB AC et BC et on utilise la réciproque du théorème de Pythagore (classe de 4ème) 2 ème méthode On calcule les coordonnées des deux 



[PDF] Géométrie dans lespace - Logamathsfr

Chapitre 11 Terminale S Géométrie dans l'espace Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie ? Droites et plans



[PDF] Géométrie dans lespace en terminale S

17 jan 2008 · – Connaître la représentation paramétrique d'une droite ; – Maîtriser l'orthogonalité dans l'espace 33 Section plane d'un tétraèdre et 



La géométrie dans lespace - CoursMathsAixfr

Sur cours maths aix chaque fiche méthode permet de mieux réussir en mathématiques Des fiches methodes maths pour terminale premiere seconde troisième  



[PDF] GÉOMETRIE DANS LESPACE - maths et tiques

Définition : Trois vecteurs sont coplanaires s'ils possèdent des représentants appartenant Méthode : Représenter un pavé droit en perspective cavalière



[PDF] GEOMETRIE DANS LESPACE - maths et tiques

alors ? est parallèle aux droites d et d' Page 6 6 sur 8 Yvan Monka – Académie de Strasbourg – www maths-et 



[PDF] Géométrie dans lespace

Géométrie dans l'espace Olivier Lécluse Terminale S 1 0 Octobre 2013 vecteur de l'espace suivant trois vecteurs non coplanaires sensibilisent aux 



[PDF] Cours de Terminale S Géométrie et probabilités

21 mai 2015 · Position relative des plans et des droites de l'espace Description de la méthode Terminale S Chapitre E Vecteurs de l'espace

:
Géométrie dans lespace - Lycée dAdultes

DERNIÈRE IMPRESSION LE26 juin 2013 à 15:11

Géométrie dans l"espace

Table des matières

1 Droites et plans2

1.1 Perspective cavalière. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Le plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Relations entre droites et plans. . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Relations entre deux droites. . . . . . . . . . . . . . . . . . . 3

1.3.2 Relations entre une droite et un plan. . . . . . . . . . . . . . 3

1.3.3 Relation entre deux plans. . . . . . . . . . . . . . . . . . . . 3

1.4 Le parallélisme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4.1 Parallélisme d"une droite et d"un plan. . . . . . . . . . . . . 4

1.4.2 Parallélisme de deux plans. . . . . . . . . . . . . . . . . . . 5

1.5 Section d"un cube et d"un tétraèdre par un plan. . . . . . . . . . . . 5

1.5.1 Section d"un cube par un plan. . . . . . . . . . . . . . . . . 5

1.5.2 Section d"un tétraèdre par un plan. . . . . . . . . . . . . . . 6

1.6 L"orthogonalité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Droites orthogonales. . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Orthogonalité entre une droite et un plan. . . . . . . . . . . 7

1.6.3 Exemple d"application. . . . . . . . . . . . . . . . . . . . . . 8

2 Géométrie vectorielle9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Application. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Vecteurs coplanaires. . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Le théorème du toit. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Repérage dans l"espace. . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.6 Représentation paramétrique d"une droite. . . . . . . . . . . . . . . 13

2.6.1 Théorème. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6.2 Exercices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6.3 Représentation paramétrique d"un plan. . . . . . . . . . . . 15

3 Produit scalaire16

3.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Propriétés et orthogonalité dans l"espace. . . . . . . . . . . . . . . . 18

3.3 Équation cartésienne d"un plan. . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Vecteur normal. Droite orthogonale à un plan. . . . . . . . 19

3.3.2 Plans perpendiculaires. . . . . . . . . . . . . . . . . . . . . . 20

3.4 Équation d"un plan. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Exercice de BAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

PAULMILAN1 TERMINALES

1 DROITES ET PLANS

1 Droites et plans

1.1 Perspective cavalière

Définition 1 :Laperspective cavalièreest une manière de représenter en deux dimensions des objets en volume. Cette représentation ne présente pas de point de fuite : la taille des objetsne diminue pas lorsqu"ils s"éloignent.

Dans cette perspective, deux des axes sont

orthogonaux (vue de face en vraie grandeur) et le troisième axe est incliné d"un angleα compris en général entre 30 et 60°par rap- port à l"horizontale, appelé "angle de fuite".

Les mesures sur cet axe sont multipliées par

un facteur de réductionkcompris en général entre 0,5 à 0,7.

Cette perspective ne donne qu"une indica-

tion sur la profondeur de l"objet. A BC DE F G H fuyante ← ×kα représentation du cube ABCDEFGH ?La perspective cavalièrene conserve pas: •la mesure : deux segments de même longueur peuvent être représentés par deux segments de longueurs différentes (AB?=BC); •les angles en particulier deux droites perpendiculaires peuvent être représen- tées par deux droites non perpendiculaires ((AB)??(AD)) Un carré peut être représenté par un parallélogramme (AEHD)! Deux droites peuvent se couper sur la perspective sans être sécantes en réalité! (les droites (HC) et (AG) par exemple)

Par contre, cette perspectiveconserve:

•le parallélisme : deux droites parallèles sont représentées par des droites paral- lèles; •le milieu ou tout autre division d"un segment.

1.2 Le plan

Définition 2 :Un planPpeut être défini par trois points A, B, C non alignés.

Il est alors noté (ABC).

Un plan peut être aussi défini par deux droites sécantes ou strictementparallèles.

Exemple :Dans le cube ABCDEFGH

le planPpeut être défini par : •les points A, E, C. Il peut être noté(AEC)

•les droites (EC) et (AG).

•les droites (AE) et (CG)A BC

DE FG H P

PAULMILAN2 TERMINALES

1.3 RELATIONS ENTRE DROITES ET PLANS

1.3 Relations entre droites et plans

1.3.1 Relations entre deux droites

Propriété 1 :Deux droites, dans l"espace, peuvent être : •coplanaires, si ces deux droites appartiennent

à un même plan [(AF) et (BE)];

•secantes, si ces deux droites se coupent en un point [(AB) et (AD)]; •parallèles, si ces deux droites sont coplanaires et n"ont aucun point commun ou si ces deux droites sont confondues [(AB) et (HG)];

•non coplanaires[(AB) et (DG)].A BC

DE F G H Conclusion :Deux droites peuvent être parallèles, sécantes ou non coplanaires.

1.3.2 Relations entre une droite et un plan

Propriété 2 :Une droite et un plan peuvent être :

•parallèles: si la droite et le plan n"ont

aucun point commun ou si la droite est contenue dans le plan [(EF) etP];

•sécantes: si la droite et le plan ont un

seul point commun [(HI) etP] A BC DE F G H I P

1.3.3 Relation entre deux plans

Propriété 3 :Deux plans peuvent être :

•parallèles: si les deux plans n"ont au-

cun points commun ou si les deux plans sont confondus (P1∩P2=∅)

•sécants: si les deux plans

ont une droite en commun. (P1∩P3= (BC)) A BC DE F G H P1 P2 P3

PAULMILAN3 TERMINALES

1 DROITES ET PLANS

1.4 Le parallélisme

1.4.1 Parallélisme d"une droite et d"un plan

Théorème 1 :Si une droitedest parallèle à une droiteΔcontenue dans un plan

P, alorsdest parallèle àP.

d//Δ

Δ?P?

?d//P P Δd Théorème 2 :Si un planP1contient deux droites sécantesd1etd2parallèles à un planP2, alors les plansP1etP2sont parallèles d

1?P1etd2?P1

d

1etd2sécantes

d

1//P2etd2//P2

?P1//P2 P1 P2 d1d 2 Théorème 3 :Si une droitedest parallèle à deux plansP1etP2sécants en une droiteΔalorsdetΔsont parallèles. d//P1etd//P2 P

1∩P2=Δ?

?d//Δ d P1 P2 Théorème 4 :Théorème du toit(démontration cf géométrie vectorielle) Soientd1etd2deux droites parallèles contenues respectivement dans les plans P

1etP2. Si ces deux plansP1etP2sont sécants en une droiteΔ, alors la droite

Δest parallèle àd1etd2.

d 1//d2 d

1?P1etd2?P2

P

1∩P2=Δ

??Δ//d1

Δ//d2

d1d2Δ P2 P1

PAULMILAN4 TERMINALES

1.5 SECTION D"UN CUBE ET D"UN TÉTRAÈDRE PAR UN PLAN

1.4.2 Parallélisme de deux plans

Théorème 5 :Si deux plansP1etP2sont parallèles, alors tout plan sécant à l"un est sécant à l"autre et les droites d"intersectiond1etd2sont parallèles. Pquotesdbs_dbs2.pdfusesText_3
[PDF] relation intergénérationnelle définition

[PDF] organisation de la protection sociale en france

[PDF] retrosocialisation definition

[PDF] direction de la sécurité sociale organigramme

[PDF] relation interspécifique entre les animaux

[PDF] protection sociale en france schéma

[PDF] directeur de la sécurité sociale

[PDF] relation trophique def

[PDF] organisation lvmh

[PDF] relations intraspécifiques facteur biotique

[PDF] organigramme maison dior

[PDF] organigramme lvmh 2017

[PDF] math tronc commun option francais

[PDF] logique et raisonnement

[PDF] organigramme de programmation logiciel