[PDF] Fiche aide-mémoire 7 : Commutant dune matrice. 1 Des remarques





Previous PDF Next PDF



Fiche aide-mémoire 7 : Commutant dune matrice. 1 Des remarques

Si M commute avec la matrice A qui est carrée d'ordre n Pour trouver le commutant d'une matrice diagonale (ou d'une matrice “simple” au sens où elle ...



Commutant dune matrice

(a) Montrer que M commute avec les matrices Eii. Dans cette question A est une matrice diagonalisable de Mn(IK)



corrreduc - copie

morphismes de E qui commutent avec f. C'est un sous-espace vectoriel de L(E). (a) Trouver les matrices qui commutent avec une matrice car- rée diagonale à 



MPSI 2 DS 07

Réciproquement une matrice diagonale commute avec toute matrice diagonale. Q 8 Montrons que. (. X2 = A. ) (i). ??.



Réduction

Soit A une matrice carrée de format 2 telle que A2 est diagonalisable et TrA = 0. X commute avec A et donc laisse stable les trois droites propres de A.



Commutant d’une matrice

(a) Montrer que M commute avec les matrices Eii. Dans cette question A est une matrice diagonalisable de Mn(IK)



Ex 1 classique On consid`ere la matrice J ? Mn(R) remplie de 1: J

On suppose que A commute avec toutes les matrices diagonales. Montrer que A est une matrice diagonale. Ex 8. Facile classique. Soit une matrice U triangulaire 



Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction

Exercice 9 : Soit T une matrice triangulaire supérieure de taille n. Montrer que T commute avec sa transposée ei et seulement si elle est diagonale.



Calcul matriciel

puissances d'une matrice et dans certains cas



réduction.pdf

On suppose en outre que C commute avec les matrices A et B. Soit A une matrice diagonalisable de Mn(R) admettant une valeur propre multiple ?.



Chapitre 7 Diagonalisation - univ-angersfr

2) Appendre à rendre une matrice non diagonale en une diagonale 3) Apprendre la notion des valeurs propres vecteurs propres etc §1 Pourquoi les matrices diagonales sont simples? Addition multiplication puissance polynôme déterminant inversion (si possible) images et noyau lié ou libre rang résolution d’un système etc



Sur la diagonalisation des matrices 2x2 - univ-rennes1fr

Aest aussi une matrice diag-onale 1 2 Matrices diagonalisables D e nition 2 Une matrice M 2M n(K) est dite diagonalisable si elle est semblable a une matrice diagonale Ceci est equivalent a dire qu’il existe une matrice inversible P 2 GL(n;K) telle que la matrice M0= P 1MP soit diagonale Rappelons que GL(n;K) d esigne l’ensemble des



Exo7 - Cours de mathématiques

qui déterminent exactement quand une matrice est diagonalisable Nous reprenons pas à pas les notions du chapitre « Valeurs propres vecteurs propres » mais du point de vue plus théorique des applications linéaires Notations Dans ce chapitre E est un K-espace vectoriel K est un corps Dans les exemples de ce chapitre K



Amphi 5 : Diagonalisation des matrices symétriques réelles

Soit A une matrice sym etrique r eelle de M n(R) Alors : 1 A est diagonalisable sur R 2 Les espaces propres sont deux a deux orthogonaux Il existe donc une matrice orthogonale P telle que P 1AP est diagonale



Sur la diagonalisation des matrices 2x2 - univ-rennes1fr

U est une matrice inversible dont les colonnes sont des vecteurs propres de M alors U?1MU est diagonale Par conséquent diagonaliser M continument revient donc peu ou prou à faire un choix pour les vecteurs propres de M qui dépende continument de M Ce choix est toujours possible localement au voisinage d'une matrice dont toutes les



Searches related to matrice qui commute avec une matrice diagonalisable PDF

• La trigonalisation : transformer une matrice en une matrice triangulaire • La décomposition de Dunford : écrire une matrice comme la somme d’une matrice diagonali-sable et d’une matrice nilpotente • La réduction de Jordan : transformer une matrice en une matrice diagonale par blocs

Comment savoir si une matrice est diagonale ?

n, U?1MU = D alors les coecients diagonaux de D sont des aleursv propres de M et les vecteurs colonnes de U sont des vecteurs propres de M. Réciproquement, si U est une matrice inversible dont les colonnes sont des vecteurs propres de M, alors U?1MU est diagonale.

Quels sont les exercices de diagonalisation des matrices ?

Nous proposons des exercices de diagonalisation des matrices. Une matrice est diagonalisable si le nombre de ces valeurs propres égale à la dimension de l’espace dans lequel est définie. D’autre part, on donne des applications de la diagonalisation pour résoudre les systèmes linéaires et calcul de l’exponentielle de matrices.

Comment diagonaliser le continument d'une matrice ?

Par conséquent, diagonaliser M continument revient donc peu ou prou à faire un choix pour les vecteurs propres de M, qui dépende continument de M. Ce choix est toujours possible localement, au voisinage d'une matrice dont toutes les aleursv propres sont distinctes. C'est une application classique du théorème d'inversion locale.

Comment calculer la diagonalisation de matrices symétriques ?

5.2 Diagonalisation de matrices symétriques 49 Exemple 5.1 Soit f une application linéaire de R3dans R3telle que A = M can,can(f) = ? ? 6 ?2 ?1 ?2 6 ?1 ?1 ?1 5 ? ?. Les valeurs propres de A sont ?1= 8, ?2= 6 et ?3= 3. A est donc diagonalisable.

F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

Fiche aide-mémoire 7 :

Commutant d"une matrice.

Beaucoup de sujets de concours s"intéressent à la détermination du commutant d"une matriceA:

Définition :

SoitAune matrice carrée d"ordren.

On appellecommutant deAl"ensemble des matricesMqui commutent avecA, c"est-à-dire telles queAM=

MA. On le note généralementC(A). Ainsi :

C(A) =fMatricesMtelles queAM=MAg=fMjAM=MAg:

Les questions concernant le commutant sont souvent les mêmes. Les résultats suivant sont à retenir.

1 Des remarques pour commencer

•La matrice nulle deMn(R)appartient àC(A). En effet,0A= 0etA0 = 0. •La matrice identité deMn(R)appartient àC(A). En effet,AI=AetIA=A. •La matriceAappartient àC(A). En effet,A:A=A2etA:A=A2(!). •Les puissances deAappartiennent àC(A). En effet,A:Ak=Ak+1etAk:A=Ak+1, ce8k2N.

2 Le commutant deAest un sous-espace vectoriel deMn(R).

Ce résultat se démontre de deux façons :

2.1 Démonstration directe

•SiMcommute avec la matriceAqui est carrée d"ordren, alors les produitsAMetMAont tous les deux

un sens :Mest donc carrée d"ordren. Ainsi,C(A) Mn(R). •La matrice nulle (au choix, ou l"identité, ouA) appartient àC(A), doncC(A)6=;. •SoientMetNdeux matrices deC(A). Alors par définitionAM=MAetAN=NA. Montrons que M+N2C(A). CommeAM=MAetAN=NA, on aA(M+N) =AM+AN=MA+NA= (M+N):A, ce qui montre queM+N2C(A). •SoitMune matrice deC(A)et2R. Alors par définitionAM=MA. Montrons queM2C(A). Comme AM=MA, et que2Ron aA(M) =(AM) =(MA) = (M)A. Ainsi,M2C(A). •Finalement,C(A)est un sous-espace vectoriel deMn(R).

2.2 Le commutant vu comme le noyau d"une application linéaire.

On remarque, comme précédemment, queC(A) Mn(R). On considère l"application

A:Mn(R)! Mn(R)

M7!AMMA:

•'Aest un endomorphisme deMn(R). En effet, on remarque déjà que l"ensemble de départ et d"arrivée de

Asont les mêmes. Il suffit donc de montrer que'Aest linéaire. SoientMetNdeux matrices carrées d"ordren,

etdeux réels. Alors'A(M+N) =A(M+N)(M+N)A=AM+ANMANAcaret sont des réels. D"autre part,'A(M)+'A(N) =(AMMA)+(ANNA) =AMMA+ANNA et donc'A(M+N) ='A(M) +'A(N). Ainsi,'est linéaire. •Ker('A) =C(A). En effet, soitM2Ker('A). AlorsAMMA= 0, doncAM=MA:M2C(A)et donc Ker('A)C(A). Réciproquement, soitM2C(A). AlorsAM=MA, doncAMMA= 0ce qui prouve queM2Ker('A)et donc queC(A)Ker('A). Finalement, on a bien Ker('A) =C(A). •C(A)est un sous-espace vectoriel deMn(R): c"est le noyau d"un endomorphisme deMn(R). 1/2 F. HECHNER, ÉCÉ 2, Collège Épiscopal Saint Étienne Année 2014-2015

3 Commutant d"une matrice diagonale

Pour trouver le commutant d"une matrice diagonale (ou d"une matrice "simple" au sens où elle comporte

beaucoup de zéros), on effectue généralement les calculs coefficient par coefficient (ce qui amène à résoudre

un système den2équations àn2inconnues.

Il peut être utile de retenir que :

•Multiplier à droite une matriceMpar une matrice diagonaleD(i.e. faire le produitMD) revient à multiplier

les colonnes deMpar les coefficients correspondants deD.

•Multiplier à gauche une matriceMpar une matrice diagonaleD(i.e. faire le produitDM) revient à multi-

plier les lignes deMpar les coefficients correspondants deD.

Exemple :Cherchons le commutant deD:=0

@0 0 0 01 0

0 0 11

A SoitMune matrice deC(D). CherchonsMsous la formeM=0 @a b c d e f g h i1 A . On aMD=0 @0b c 0e f 0h i1 A et DM=0 @0 0 0 def g h i1 A doncMD=DM()( b= 0; c= 0;d= 0 f=f; g= 0; h= 0()M=0 @a0 0 0e0 0 0i1 A

Finalement,C(D)est formé de toutes les matrices d"ordre3diagonales. C"est donc un sous-espace vectoriel

deM3(R)de dimension3. Précisément, une base en est0 @0 @1 0 0 0 0 0

0 0 01

A ;0 @0 0 0 0 1 0

0 0 01

A ;0 @0 0 0 0 0 0

0 0 11

A1 A (on a vu

que cette famille était génératrice puisque on a trouvé queMs"écritafois la première plusefois la deuxième

plusifois la troisième), et on montre aisément qu"elle est libre). Remarque :En fait, dans le cas oùDest diagonale,et que toutes les valeurs propres deDsont deux

à deux distinctes(i.e. les coefficients diagonaux deDsont tous différents),C(D)est l"ensemble des matrices

diagonales. Dans ce cas, on peut même montrer queI;D;D2;:::;Dn1est une base deC(D)(rappelons que nest l"ordre deD). Exemple (retour). Montrons que(I;D;D2)est une base deC(D). Comme c"est une famille de trois vecteurs

et queC(D)est de dimension trois, il suffit de montrer que la famille est libre. Soienta;b;ctrois réels

tels queaI+bD+cD2= 0. CommeaI+bD+cD2=0 @a0 0 0a0 0 0a1 A +0 @0 0 0 0b0 0 0b1 A +0 @0 0 0 0c0 0 0c1 A 0 @a0 0

0ab+c0

0 0a+b+c1

A ,aI+bD+cD2= 0donne immédiatement8 :a= 0 b+c= 0 b+c= 0, donca=b=c= 0: la famille(I;D;D2)est libre. Finalement,(I;D;D2)est une base deC(D).

4 Cas général : obtention du commutant par diagonalisation!

SiAest diagonalisable, on peut trouver une matricePinversible, et une matrice diagonaleD, telles queA=

PDP

1. On remarque alors queAM=MA()PDP1M=MPDP1()DP1M=P1MPDP1()DP1MP=

P

1MPD()DN=NDoùN=P1MP.

Ainsi, on a l"équivalenceM2C(A)()N2C(D)oùN=P1MPetA=PDP1. On peut donc déduire le commutant deAde celui deD. Remarque :dans tous les cas, laissez-vous guider par l"énoncé! 2/2quotesdbs_dbs26.pdfusesText_32
[PDF] commutant dune matrice triangulaire

[PDF] la thébaïde racine commentaire

[PDF] la thébaïde texte intégral

[PDF] la thébaïde résumé court

[PDF] la thébaïde racine pdf

[PDF] la thébaïde acte i scène 1 analyse

[PDF] suite de matrice convergente

[PDF] convergence suite matricielle

[PDF] determiner lensemble des matrices qui commutent avec a

[PDF] puissance nième d'une matrice triangulaire

[PDF] puissance de matrice exercices corrigés

[PDF] puissance nième d'une matrice carrée

[PDF] conclusion des voyages de james cook

[PDF] ami de maupassant

[PDF] le trone de fer ebook gratuit