[PDF] Ch. 5 : Echantillonnage estimation





Previous PDF Next PDF



Cours de statistique descriptive

En théorie on ne peut calculer la moyenne que pour (intervalle allant de la valeur minimum prise par le caractère X ... Distribution avec un nombre.



Ch. 5 : Echantillonnage estimation

Si le tirage est avec remise (ou si la population est tr`es grande par rapport `a moyenne µ de plus qu'un intervalle donné par un param`etre positif ?.



Calcul dun intervalle de confiance pour la moyenne dans une

La population étudiée n'est pas symétrique et la distribution des données n'est pas normale. Avec le plan de sondage aléatoire simple nous utilisons trois 



Cours de Statistiques inférentielles

X est l'espérance des carrés des écarts avec la moyenne : ?2. X = E[(X ? µX)2] = On doit ensuite calculer la valeur de la statistique.



Probabilités et statistiques Utilisation de la TI-NSPIRE dans le cadre

[CTRL] [menu] et choisir "Ajouter une variable X avec liste l'intervalle de confiance directement dans une feuille de calculs de la façon suivante.



Traitement statistique des données pour le TIPE

Calculer la moyenne et l'écart-type corrigé de cette série statistique puis déterminer l'intervalle de confiance à 90% en utilisant la loi de Student.



Cours de Statistiques niveau L1-L2

7 mai 2018 Premiers textes connus sur le calcul des hasards (ou des chances) au. XVIe siècle avec Cardan et au XVIIe siècle avec Galilée.



STATISTIQUE : ESTIMATION

Intervalle de confiance de la différence de deux moyenne par intervalle : on cherche un intervalle dans lequel ?0 se trouve avec une probabilité élevée.



Statistiques descriptives et exercices

Rappels de cours et exercices corrigés sur la statistique descriptive On peut donc exprimer et calculer la moyenne dite "arithmétique" avec.



Estimations et intervalles de confiance

mations : intervalle de confiance d'une proportion d'une moyenne Un aspect important de l'inférence statistique consiste à obtenir des “esti-.



[PDF] Statistiques Moyenne Médiane

En déduire que la valeur moyenne de la série est le nombre qui minimise l'écart quadratique moyen 4 Calculer s en fonction a = x ? x1 pour n = 2 3 Stabilité 



[PDF] Cours de statistique descriptive

? Centre = Amplitude divisée par deux + borne inf ? Calcul de la moyenne pondérée ? On considère que le centre de la classe correspond à la moyenne des



[PDF] Calcul dun intervalle de confiance pour la moyenne dans une

Cet essai a pour objectif de calculer un intervalle de confiance pour la moyenne µ `a 100(1??) dans un plan de sondage aléatoire simple ainsi que dans 



[PDF] Variance et écart type - Statistiques descriptives - Parfenoff org

La variance et l'écart type permettent de mesurer la « dispersion » des valeurs de la série autour de la moyenne Si les valeurs de la série possèdent une 



[PDF] Statistiques descriptives et exercices

On peut donc exprimer et calculer la moyenne dite "arithmétique" avec des effectifs ou avec des fréquences Exemple 15 Si x = 2 46 alors nous avons au moyenne 



441 Calcul de la moyenne - Statistique Canada

2 sept 2021 · Les statistiques : le pouvoir des données! est une ressource Web créée en 2001 pour aider les étudiants du secondaire et les enseignants de 



Moyenne médiane et mode dune série statistique - Khan Academy

22 est la valeur qui a le plus grand nombre d'occurrences Calcul de la moyenne d'une série statistique Il existe différentes moyennes 



[PDF] Statistique descriptive - 4Gestion Academy

Présenter ces données dans un tableau avec des classes de même amplitude en sachant qu'aucun salarié ne gagne plus de 14 000 DH 2 Calculer la moyenne et 



[PDF] Les statistiques descriptives et les intervalles de confiance - divatfr

La variance mesure la variabilité autour de la moyenne s2 = ?N i=1(xi ? ¯x)2 N ? 



[PDF] Les paramètres statistiques de centralité

La moyenne arithmétique est très sensible aux valeurs extrêmes Calcul sur un tableau statistique complet Salariés Salaires mensuels nets (€)

  • Comment calculer la moyenne en statistique avec les intervalles ?

    Dans ce cas, il faudra d'abord calculer le centre de chaque intervalle en faisant la moyenne des deux bornes de l'intervalle. Deuxième étape : il faudra multiplier chaque centre d'intervalle par l'effectif correspondant. Enfin, il restera à diviser le résultat par l'effectif total.
  • Comment calculer l'intervalle médian ?

    Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant. Si le nombre de valeurs est un nombre impair, il faut lui additionner 1, puis le diviser par 2 pour obtenir le rang qui correspondra à la médiane.
  • Comment calculer une moyenne à partir d'une fréquence ?

    Quand on calcule une moyenne en utilisant la fréquence, on multiplie juste les valeurs par les effectifs sans avoir à diviser par l'effectif total.
  • Diviser par l'effectif total
    L'effectif total est la somme des effectifs de chaque valeur. La moyenne pondérée est obtenue en effectuant la division du résultat de l'étape 2 par l'effectif total.
Ch. 5 : Echantillonnage estimation U.P.S. I.U.T. A, D´epartement d"Informatique Ann´ee 2008-2009

Ch. 5 : Echantillonnage, estimation

1 Echantillonnage et suites de variables al´eatoires.

Un´echantillonde taillenest une partie den´el´ements choisis al´eatoirement dans une populationP. On dit qu"il estnon exhaustiflorsque le tirage se fait avec remise,exhaustif dans le cas contraire. Des tirages avec remise forment des ´ev`enements ind´ependants : l"urne

n"est pas modifi´ee par le tirage. Si la population est tr`es grande ou infinie, on pourra toujours

consid´erer que le tirage est non exhaustif : le fait de remettre ou non l"´el´ement tir´e devient

sans importance. On suppose maintenant qu"on ´etudie un caract`ere statistique quantitatifCsurP. On consid`ere l"ensemble Ω ndes ´ev`enements : "tirage d"un ´echantillon de taillen". On obtient une suite de variables al´eatoiresX1,X2,...Xn, o`uXiest la valeur du caract`ereCsur le i-`eme

´el´ement de l"´echantillon tir´e.

Si le tirage est avec remise (ou si la population est tr`es grande par rapport `a l"´echantillon)

ces variablesXisont ind´ependantes et suivent toutes la mˆeme loi de probabilit´e, d"esp´erance

la moyenne deCet d"´ecart-type celui deC. A partir desnvariables al´eatoiresXi, on en construit de nouvelles, appel´ees "estimateurs". Par exemple, siXine prend que deux valeurs (pile/face, oui/non) cod´ees par 1, 0, on peut

compter le nombre de "pile" ou de "oui" dans l"´echantillon `a l"aide de la variable al´eatoire

"somme sur l"´echantillon" : S n=X1+X2+···Xn. On peut aussi, pour "estimer" la moyenne du caract`ere statistiqueC, consid´erer la variable al´eatoire "moyenne sur l"´echantillon" : M n=X1+X2+···Xn n. Pour estimer l"´ecart-type du caract`ere statistiqueCon consid`ere la variable al´eatoire : n-1=???? 1 n-1n i=1(Xi-Mn)2. Remarquer la pr´esence den-1 au lieu den: cet estimateur est "meilleur" que Σn(´ecart-

type de l"´echantillon) pour estimer l"´ecart-typeσde la population (voir le§3). Noter qu"on

a : Σ n-1=? n n-1Σn.

Comment ´evoluent ces variables lorsqu"on augmente la taille de l"´echantillon (n→ ∞)?

1

2 Les "th´eor`emes limites".

In´egalit´e de Bienaym´e-Tchebychev.SoitXune variable al´eatoire continue d"esp´erance

μet d"´ecart-typeσ. On veut mesurer la probabilit´e que les valeurs deXs"´ecartent de la valeur

moyenneμde plus qu"un intervalle donn´e par un param`etre positifλ. Pour toutλ >0 on a : p(|X-μ

Preuve- On poseY=X-μ

σ.On a :E(Y) = 0 etσ(Y) = 1 d"o`u,

1 =σ2(Y) =?

y2fY(y)dy |y|≥λy2fY(y)dy ≥λ2? |y|≥λf

Y(y)dy=λ2p(|Y| ≥λ),

d"o`u l"in´egalit´e en divisant parλ2. Pour une variable al´eatoire `a valeurs discr`etes, la preuve

est similaire : remplacer?y2fY(y)dypar? iy2ipi. Exercice 1.On lance 100 fois de suite une pi`ece. La variable al´eatoireX: nombre de "pile" obtenus suitB(100,1

2). En utilisant l"in´egalit´e de Bienaym´e-Tchebychev, minorer la probabilit´e

p(40< X <60)et comparer avec la valeur exacte donn´ee par la loi binomiale. Loi (faible) des grands nombres.On se place dans la situation d"un ´echantillonnage

de taillen, et donc d"une suite de variables al´eatoiresX1,...Xnind´ependantes, de mˆeme loi,

mˆeme esp´eranceμet mˆeme ´ecart-typeσ. SoitMn=1 n? iXila variable al´eatoire "moyenne d"un ´echantillon". On a, pour toutε >0 donn´e, p(|Mn-μ|< ε)≥1-σ2 nε2et en particulier limn→∞p(μ-ε < Mn< μ+ε) = 1. c"est-`a-dire :Mnprendra une valeur aussi proche qu"on veut deμ, avec une probabilit´e aussi proche qu"on veut de 1, `a condition de prendre la taillende l"´echantillon suffisamment grande. Preuve- Puisque les variablesXisuivent la mˆeme loi de param`etresμetσet sont ind´ependantes, on a

E(Mn) =nμ

n=μetσ(Mn) =? nσ2 n2=σ⎷n. D"apr`es l"in´egalit´e de Bienaym´e-Tchebychev appliqu´ee `aMnon a : p(|Mn-μ| 2

Choisissonsλtel queλσ

n

σ.On a :

nε2. On passe `a l"´ev`enement contraire pour obtenir l"´enonc´e de la loi. Th´eor`eme de la limite centr´ee.A partir de la variableMnpr´ec´edente on construit la variable centr´ee r´eduite : Z n=Mn-μ Rappelons que la loi de probabilit´e de chaqueXiet donc deMnet deZnest inconnue.

N´eanmoins on a (preuve admise) :

La loi de probabilit´e deZntend vers celle de la loi normale centr´ee r´eduiteN(0,1)lorsquen

tend vers l"infini. C"est-`a-dire : lim n→∞p(Zn< a) = Π(a). avecΠ(a) =p(Z < a)o`uZsuit la loi normale centr´ee r´eduite.

Rappelons Π(a) est le nombre donn´e par la table de la loi normale centr´ee r´eduite (`a nouveau

disponible en derni`ere page de ce document). Cas particulier : approximation d"une loi binomiale par uneloi normale.Si le caract`ere C ne prend que deux valeurs 1 et 0 (ou blanc/noir) en proportionpetq= 1-p, on

a vu queBn=X1+···+Xn(le nombre de "blanc" sur un ´echantillon den´el´ements) suivait

la loi binomialeB(n,p), d"esp´eranceμ=npet d"´ecart-typeσ=⎷ npq. D"apr`es le th´eor`eme pr´ec´edent, pourngrand (dans la pratique,np >15etnq >15),Zn= B n-μ

σsuit approximativement la loi normaleN(0,1).

Utilisation pratique : correction de continuit´e.La loi binomiale ´etant discr`ete et la loi normale

´etant continue, on ne peut approximerp(Zn=k) parp(Z=k) o`uZsuit la loi normale centr´ee r´eduite : en effet,p(Z=k) est toujours nul. On doit remplacerkpar l"intervalle ]k-1/2,k+ 1/2[ (On fait une "correction de continuit´e"). Exemple : Exercice 2.Xsuit la loi binomialeB(50,0.5). Calculerp(X= 24), en l"approximant par 3

3 Estimation.

On veut ´etudier les propri´et´es d"un caract`ereCd"une population `a partir de ses valeurs sur un ou plusieurs ´echantillons. Estimation ponctuelle.Pour estimer un param`etre deC(par exemple la moyenneμou

l"´ecart-typeσ),on choisit un ´echantillon particulieren(d"o`u l"appellation "ponctuelle"), et

on calcule la valeur de l"estimateur (Mn, Σn-1,...) sur cet ´echantillon :mn=Mn(en),σn-1= n-1(en). Le choix de l"estimateur en fonction du param`etre `a approcher est un probl`eme difficile : par exemple pourquoi choisir Σ n-1plutˆot que Σnpour estimer l"´ecart-type? Nous admettons ici que dans le cas des param`etresμouσ, les estimateursMnou Σn-1propos´es ici sont "les meilleurs possibles", ce qui signifie :

- ´etant donn´e une suite d"estimations ponctuelles sur des´echantillonsende taillen, on a :

lim nMn(en) =μ, limnΣn-1(en) =σ(l"estimation se rapproche du param`etre cherch´e lorsque la taille de l"´echantillon augmente); -E(Mn) =μetE(Σn-1) =σ. (Si on moyennise les estimations sur tous les ´echantillons de taillenon trouve le param`etre. L"estimateur est dit "sans biais"); - L"´ecart-type deMnet Σn-1est minimal (l"estimation ponctuelle varie le moins possible d"un

´echantillon `a un autre).

Estimation par intervalle de confiance.On ne cherche plus `a donner une valeur estim´ee la meilleure possible du param`etrex(moyenne, proportion, ´ecart-type...) mais un intervalle

de valeurs dans lequel la vraie valeur se trouve avec une probabilit´e donn´ee (le coefficient de

confiance; dans la pratique, 95%, 99%...). Si on ´ecrit le coefficient de confiance sous la forme

1-α,αest appel´e le "risque" (5%, 1%,...).On cherche donc[a,b]tel que

p(x?[a,b]) = 1-α. Estimation d"une moyenneμpar intervalle de confiance. On peut obtenir un "intervalle de confiance" [a,b] dans lequel une moyenneμse trouve avec un risque donn´e sous l"une des deux hypoth`eses suivantes :

i- le caract`ere statistique suit une distribution quelconque d"´ecart-type connuσ, et l"´echantillon

est grand (n≥30); ou ii- le caract`ere statistique suit une distribution normale d"´ecart-type connuσ; la taille de l"´echantillon est alors sans importance. SoitMnl"estimateur : "moyenne d"un ´echantillon de taillen." Nous savons que son esp´erance estμet son ´ecart-type estσ/⎷ n. On sait d"apr`es le th´eor`eme de la limite centr´ee :

T=Mn-μ

σ/⎷nsuit approximativement la loi normale centr´ee r´eduite. Sous l"hypoth`ese (ii-), on peut mˆeme enlever le mot "approximativement". On peut donc trouver `a l"aide de la table deN(0,1) le nombretαtel que p(|T|< tα) = 1-α. 4 Exemples classiques, `a v´erifier sur la table deN(0,1) `a l"aide de la formulep(|T|< tα) =

2Π(tα)-1 :

- siα= 5%,tα= 1,96 ; - siα= 1%,tα= 2,576; - siα= 0,1%,tα= 3,29. x3210,5 0 0,4 0,3 -1 0,2 0,1 -2 0 -3 Figure1 - Limites du seuil `a 5% sur la loi normale centr´ee r´eduite

On a :

p(|T|< tα) =p(-tαLa m´ethode est identique. On consid`ere la variable al´eatoirePnd´efinie sur l"ensemble des

´echantillons de taillen. Son esp´erance estpet son ´ecart-type? pq/n. On utilise `a nouveau le th´eor`eme de la limite centr´ee : Sinest suffisamment grand (dans la pratiquen≥3/pnqn), alors la variable al´eatoireT= (Pn-p)/? pq nsuit la loi normale centr´ee r´eduiteN(0,1).

On en d´eduitaetbcomme pr´ec´edemment : `a partir du nombretαtel quep(|T|< tα) = 1-α

obtenu sur la table deN(0,1), et une estimation ponctuellepndePnsur un ´echantillonen, on obtient l"intervalle de confiance [a,b] = [pn-tα? pq n, pn+tα? pq n]. Cependant, dans cette formulepetqrestent inconnus. On s"en sort de deux mani`eres : - par approximation ponctuelle : on remplacepetqparpnetqnconnus sur un ´echantillon.

On prend donc :

[a,b] = [pn-tα? pnqn n, pn+tα? pnqn n]. - par majoration : lorsquepest compris entre 0 et 1, le produitp(1-p) est plus petit que 1/4

(Exercice : le v´erifier avec l"´etude de la fonctionp?→p(1-p).) On majore donc l"intervalle

de confiance par : [a,b] = [pn-tα

2⎷n, pn+tα2⎷n].

Exercice 4.Lors d"un second tour `a une ´election pr´esidentielle, on veut faire un sondage sur 800 personnes pour connaitre la proportionpd"´electeurs votants pour le candidat A et q= 1-pvotants pour B. Le sondage donne A `a 48% et B `a 52%.

1- Quelle est l"intervalle de confiance (avec un risque d"erreur de 5%) autour de ces valeurs

donn´ees par le sondage?

2- Afin de pouvoir les d´epartager, on souhaite obtenir un intervalle de confiance de longueur

±1%, toujours avec un risque d"erreur de 5%. Quelle doit ˆetre lataillende l"´echantillon?

Test sur le chapitre 5

1. Enoncer la loi faible des grands nombres.

2. Enoncer le th´eor`eme de la limite centr´ee.

3. Etant donn´ee l"estimationmnd"une moyenneμsur un ´echantillon, donner la formule

de l"intervalle de confiance dans lequel se trouveμavec un risque de 1%.quotesdbs_dbs28.pdfusesText_34
[PDF] moyenne statistique formule

[PDF] calcul perimetre cercle

[PDF] la régulation de la pression artérielle

[PDF] un tir de mine a été effectué dans une carrière correction

[PDF] corriger un tir de mine a été effectué dans une carrière

[PDF] profondeur moho sismolog

[PDF] besoin en eau par jour par personne

[PDF] besoin journalier en eau du corps humain

[PDF] les normes de l'oms sur l'eau potable pdf

[PDF] estimation des besoins en eau potable

[PDF] coefficient de température

[PDF] calcul temperature cable electrique

[PDF] temperature resistance chauffante

[PDF] calculer la taille d'une image en octet

[PDF] calcul poids image video