[PDF] [PDF] Les symboles somme et produit - Lycée dAdultes





Previous PDF Next PDF



Factorielle et binôme de Newton Cours

Factorielle et binôme de Newton Pour tout k ? {0 1



Calcul Algébrique

k=0. 2k désigne la somme. 20 + 21 + 22 + 23 + ··· + 2n?1 + 2n . Il est souvent utile d'étendre la définition de la factorielle en convenant que 0! = 1.



Cours de mathématiques - Exo7

1. Pour un entier n fixé programmer le calcul de la somme Sn = 13 + 23 + 33 + ··· + n3. somme = somme + 1/(2*k+1) * (x ** (2*k+1)).



Sommes et séries

k=a uk = ua + ua+1 +. ··· + ub pour les petites sommes. ?n+1 k=0 Linéarité (découpage vertical) Somme de sommes. ... Ecriture factorielle de (n k. ) ...



Les symboles somme et produit - Lycée dAdultes

27 févr. 2017 Exemple : On peut utiliser le symbole D pour définir « factorielle » d'un entier naturel n noté n ! n! = n n k=1 k = 1 × ...



Sommes et produits

k=0 a. Solution : 1. Cette notation est valable pour tout objet mathématique pour lequel une opération associative. « somme » a été définie (pour certaines 



Somme et factoriel

Somme et factoriel. Q1- Écrire la fonction factoriel(k) qui reçoit en paramètre un entier positif k et qui renvoie la valeur du factoriel de k : k! = 1 * 2 



ALGO 1.1 œ Correction TD N°5.

Exercice 1. Remarque : On ne s'occupe pas de la situation où l'utilisateur saisit un entier strictement négatif. Rappel : 0 ! = 1. Calcul de la factorielle 



Sur la somme de certaines séries de factorielles

~~3~ k+1 on en déduit. Passons au cas n 2: 1. La formule suivante [12



Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p. X k=2.



[PDF] Factorielle et binôme de Newton Cours

Exprimer un en fonction de n Exercice 4 (Formule du binôme de Newton et sommes) 1 Soit k et n deux entiers tel que 1 ? k ? n 



Somme des k factorielle - Forum FS Generation

Bonjour/Bonsoir je sais que ce topique commence à dater mais j'ai trouvé une formule explicite qui donne la somme des k factorielles



[PDF] Sur la somme de certaines séries de factorielles - Numdam

wm = (ka 03C1)1/(k+1) e(i/(k+1))(2m03C0-03C9+03B1) Quand 03C1 ~ oo on a wm = La fonction étant analytique au voisinage de 



[PDF] Calcul Algébrique

1 Cours 1 1 Sommes et produits Nous commençons par les sommes L'écriture 5 ? k=0 2k se lit « somme pour k allant de zéro à cinq de deux puissance k » 



[PDF] Sommes et produits

Après un changement d'indice le nombre de termes dans la somme doit rester inchangé ! Exemples : E 1 p X k=2



[PDF] Sommes et produits

Exemple Calcul de la somme des 1 k(k + 1) Solution : Exemple Le calcul de la somme géométrique donné plus haut faisait aussi intervenir une somme 



[PDF] Chapitre IV : Calculs algébriques I La somme ? et le produit ?

Exemple 12 : Calculer la somme des nombres impairs de 1 à 99 en utilisant une suite arithmétique Soient (un)n?N une suite de réels ou de complexes et q ? K



[PDF] Les symboles somme et produit - Lycée dAdultes

27 fév 2017 · Exemple : On peut utiliser le symbole D pour définir « factorielle » d'un entier naturel n noté n ! n! = n n k=1 k = 1 × 



[PDF] Chapitre 4 Formules de Taylor

Définition 4 1 3 La somme n ? k=0 hk k! f(k)(x0) s'appelle le polynôme de Taylor de f `a l'ordre n au point x0 Par convention 0! = 1! = 1 Remarque



[PDF] Chapitre 24 SOMMES DE RIEMANN Enoncé des exercices

Chapitre 24 SOMMES DE RIEMANN Enoncé des exercices 1 Les basiques Exercice 24 1 Soit (un)n?N* la suite définie par un = n ? k=1

:
[PDF] Les symboles somme et produit - Lycée dAdultes DERNIÈRE IMPRESSION LE27 février 2017 à 15:46

Les symboles somme et produit

Table des matières

1 Le symbole sommeΣ2

1.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Linéarité et changement d"indice. . . . . . . . . . . . . . . . . . . . 3

1.3 Sommes télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Sommes à connaître. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Sommes doubles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Le symbole produitΠ9

2.1 Définition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Relation produit - somme. . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Produits télescopiques. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1 Le symbole sommeΣ

1.1 Définition

Définition 1 :Soit(ai)une suite de nombres réels ou complexes. Soit deux entiers naturelsnetptels quep?n, on définit la somme suivante par : n∑ k=pa k=ap+ap+1+···+an Soit I un sous-ensemble fini deN, la somme de tous les termesai,idécrivant I sera notée∑ i?Ia i

Remarque :

•La variablekest une variable muette, c"est à dire qu"une fois la somme calculée, le résultat ne dépend plus dek. On peut donc lui donner le nom qu"on veut :i, j,k, etc. à exception des bornes de la somme, icipetn:n∑ k=pa k=n∑ i=pa i=n∑ j=pa j

•On retrouve cette variable muette, lorsque l"on veut calculer une somme àl"aide d"un algorithme. (boucle Pour)

•Lorsque les termes de la somme ne dépendent pas de la variable, on somme des termes constants donc : n∑ k=03=3+3···+3? n+1 termes=3(n+1)

•Si I={2;4;6}alors∑

i?Ia i=a2+a4+a6.

Exemples :

•1+2+···+n=n∑

k=1k.

•1+2+22+···+2n=n∑

k=02k. •1 n+1+1n+2+···+12n=n∑ k=11n+k.

•1+3+5+···+(2n-1) =n∑

k=1(2k-1). ?Ne pas confondre : n∑ k=1(k+1) =n∑ k=1k+navecn∑ k=1k+1 les parenthèses font toute la différence. n∑ k=022k(n+1 termes) et2n∑ k=02k(2n+1 termes) Propriété 1 :Relation de Chasles et linéarité :

Relation de Chasles :

n∑ k=pa k= m∑ k=pa k+n∑ k= m+1 ak

L"opérateur somme est linéaire :

n∑ k=p(αak+βbk) =αn∑ k=pa k+βn∑ k=pb k.

PAUL MILAN2VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

Exemple :n∑

k=0a k=

2∑

k=0a k+n∑ k= 3 aketn∑ k=0(3k+4k) =n∑ k=03k+4n∑ k=0k

1.2 Linéarité et changement d"indice

Propriété 2 :Changement d"indice.

L"expression à l"aide du symbole

∑n"est pas unique. On peut écrire une somme avec des indices différents. Les changements d"indicesk→k+p(translation)k→p-k(symétrie) sont les plus fréquents :n∑ k=1a k=n+p k=p+1a k-p=p-1 k=p-na p-k

Exemples :Calculer la somme :Sn=n∑

k=1?

1k-1k+1?

•On utilise la linéarité :Sn=n∑

k=11k-n∑ k=11k+1 •On effectue un changement d"indice sur la deuxième somme :k→k+1 : S n=n∑ k=11 k-n+1∑ k=21k. k=21k-n∑ k=21k-k=n+1? ???1 n+1=1-1n+1

Pourn?2, on considère la sommeSn=n+1∑

k=2k22k-1. Faire une translation d"indice pour que la nouvelle variable varieentre 0 et(n-1) et une symétrie d"indice pour que la nouvelle variable varie entre 2et(n+1). •Pour la translation, il suffit de faire :k→k-2, on a alors : S n=n-1∑ k=0(k+2)22(k+2)-1=n-1∑ k=0(k+2)22k+3 •Pour la symétrie, il faut déterminer le milieu :2+ (n+1)2=n+32. On effectue alors la symétriek→n+3-k, on a alors : S n=n+1∑ k=2(n+3-k)22(n+3-k)-1=n+1∑ k=2(n+3-k)22n+5-2k

PAUL MILAN3VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.3 Sommes télescopiques

Théorème 1 :Sommes télescopiques

Soit une suite(an)une suite de nombres réels ou complexes, on a : ?n,p?N,p?n,n∑ k=p(ak+1-ak) =an+1-ap

Remarque :n∑

k=0(ak+1-ak) =an+1-a0etn∑ k=0(bk-bk+1) =b0-bn+1

Démonstration :On pose :Sn=n∑

k=p(ak+1-ak)

•On utilise la linéarité :Sn=n∑

k=pa k+1-n∑ k=pa k •On effectue un changement d"indice sur la première somme :k→k+1 S n=n+1∑ k=p+1a k-n∑ k=pa k •On sépare les termes différents :Sn=an+1+n∑ k=p+1a k-n∑ k=p+1a k-ap=an+1-ap Exemples :Lessommestélescopiquessontuneméthodetrèsefficacepourcalcu- ler la somme des termes d"une suite(un). Il s"agit de trouver une suite(vn)pour queun=vn+1-vn. Ce n"est bien sûr pas toujours possible malheureusement.

Calculer les sommes suivantes :

•Sn=n∑

k=11k(k+1): on décompose1k(k+1)en1k-1k+1 S n=n∑ k=11 k(k+1)=n∑ k=1?

1k-1k+1?

=1-1n+1.

•Rn=n∑

k=1k×k! : on décomposek×k! en(k+1)k!-k!= (k+1)!-k! R n=n∑ k=1k×k!=n∑ k=1[ (k+1)!-k!]= (n+1)!-1

•Tn=n∑

k=11k(k+1)(k+2) a k(k+1)-a(k+1)(k+2)=a(k+2)-akk(k+1)(k+2)=2ak(k+1)(k+2), on aa=12 T n=n∑ k=11 k(k+1)(k+2)=12n∑ k=1?

1k(k+1)-1(k+1)(k+2)?

1 2?

12-1(n+1)(n+2)?

n(n+3)

4(n+1)(n+2)

PAUL MILAN4VERS LE SUPÉRIEUR

1. LE SYMBOLE SOMMEΣ

1.4 Sommes à connaître

Théorème 2 :Somme des entiers, des carrés, des cubes Pour tout entier naturelnnon nul, on a les relations suivantes :

•S1(n) =n∑

k=1k=1+2+···+n=n(n+1)2

•S2(n) =n∑

k=1k2=1+4+···+n2=n(n+1)(2n+1)6

•S3(n) =n∑

k=1k3=1+8+···+n3=n2(n+1)24 Démonstration :La première formule a été démontré en première en ordon- nant la somme dans l"ordre croissant puis dans l"ordre décroissant. Les deux der- nières formules ont été démontré en terminale par récurrence. Mais les démons- trations directes sont possibles à l"aide de sommes télescopiques. On pourrait généraliser ces démonstration aux somme des puissancespième des entiers na- turels.

•S1(n), on utilise la sommen∑

k=1[(k+1)2-k2] = (n+1)2-1 n∑ k=1[(k+1)2-k2] =n∑ k=1(k2+2k+1-k2) =n∑ k=1(2k+1) =2n∑ k=1k+n∑ k=11=2S1(n) +n

On en déduit que :

2S1(n) +n= (n+1)2-1?S1(n) =(n+1)2-(n+1)

2=n(n+1)2

S2(n), on utilise la sommen∑

k=1[(k+1)3-k3] = (n+1)3-1 n∑ k=1[(k+1)3-k3] =n∑ k=1(k3+3k2+3k+1-k3) =n∑ k=1(3k2+3k+1) =3n∑quotesdbs_dbs29.pdfusesText_35
[PDF] exercice nombre d'or 1ere s

[PDF] obésité classe 1

[PDF] imc normal

[PDF] indice poids taille age

[PDF] indice de masse corporelle

[PDF] imc tableau

[PDF] calculer son imc

[PDF] cdt alcool taux normal

[PDF] taux cdt

[PDF] calcul taux alcoolémie formule

[PDF] taux d'alcoolémie mortel

[PDF] taux d'alcool permis quebec

[PDF] 0.08 alcool age

[PDF] multiplication et division de fraction

[PDF] évaluation 5ème maths