[PDF] Corrigé du TD no 9 Exercice 4. Soit f : R ?





Previous PDF Next PDF



Corrigé du TD no 11

Dans tous les cas la formule est bien vérifiée. 2. Soient f et g deux fonctions continues D ? R. Soit max(fg) la fonction définie par max(f



Chapitre 3 Dérivabilité des fonctions réelles

Soit f : I ? R une fonction et soit x0 ? I. On dit que f est dérivable Soient f



Corrigé du TD no 9

Exercice 4. Soit f : R ? R la fonction définie par f(x) = Donc g a des limites à droite et à gauche en n qui sont égales à g(n) ce.



FONCTIONS POLYNOMES DU SECOND DEGRE

Une fonction polynôme de degré 2 f est définie sur ? Soit la fonction f définie sur ? par ... f (x) = ?x2 + 2x + 2 g(x) = x2 ?3x + 5.



Fonctions : symétries et translations

Feb 27 2017 Soit les fonctions f et g définies sur R par : f(x) = x et g(x) = x. 2. On a par exemple : 1. 2. > (12). 2. ? f (12) > g (12) et 2 < 22.



EX 1 : ( 2 points ) Soit f et g les fonctions définies sur R par f (x) = 2 et

EX 1 : ( 2 points ) Soit f et g les fonctions définies sur R par f (x) = ex +e?x. 2 et g (x) = ex ?e?x. 2. Les affirmations suivantes sont -elles vraies 



Série dexercices no2 Les fonctions Exercice 1 : images et

Calculer le domaine de définition des fonctions f définies de la façon suivante : Soit f : R ! R une fonction impaire sur R et croissante sur R+.



FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres 



TD 4 Convolution

http://math.univ-lyon1.fr/~mironescu/resources/maths4_td_4_support.pdf



Généralités sur les fonctions

Définition 1 : Soit f une fonction définie sur un ensemble Df et soit I un intervalle de R inclu dans Df . La restriction de f à I est la fonction g définie 



Méthodes pour les équations fonctionnelles (2) - ac-bordeauxfr

On se propose de déterminer toutes les fonctions f de R dans R continues sur R différentes de la fonction nulle et vérifiant pour tout réel x l’équation fonctionnelle f (x y) = f (x) f (y) On note S l’ensemble des fonctions f remplissant ces conditions Soit f une fonction élément de S 1



Exo7 - Exercices de mathématiques

Soient les fonctions dé?nies sur R f(x)=x g(x)=x2 et h(x)=ex; Justi?er qu’elles sont intégrables sur tout intervalle fermé borné de R En utilisant les sommes de Riemann calculer les intégrales R 1 0 f(x)dx R 2 1 g(x)dx et R x 0 h(t)dt Indication H Correction H Vidéo [002082] Exercice 3 Soit f : [a;b]!R une fonction continue



GENERALITES SUR LES FONCTIONS

Courbes représentatives des fonctions f + g et f – g On obtient les courbes représentatives de f + g [resp f – g] en additionnant [resp soustrayant] les ordonnées des points de C f et de C g ayant la même abscisse Remarque : Si deux fonctions ont le même sens de variation sur un intervalle I alors la fonction f + g garde ce sens de



Chapitre 3 D´ erivabilit´ e des fonctions r´ eelles

Soient fg : I ? R deux fonctions et soit x 0 ? I On suppose que f et g sont d´erivables en x 0 Alors (1) f +g est d´erivable en x 0 et (f +g) ?(x 0) = f ?(x 0)+g (x 0) (2) fg est d´erivable en x 0 et (fg)?(x 0) = f ?(x 0)g(x 0)+f(x 0)g?(x 0) (3) si g(x 0) 6= 0 alors f g est d´erivable en x 0 et µ f g ¶? (x 0) = f



Searches related to soit f et g les fonctions définies sur r par PDF

Soit n>2 un entier ?xé et f : R+ =[0;+¥[! R la fonction dé?nie par la formule suivante: f(x)= 1+xn (1+x)n; x >0: 1 (a)Montrer que f est dérivable sur R+ et calculer f0(x) pour x >0: (b)En étudiant le signe de f0(x)sur R+;montrer que f atteint un minimum sur R+ que l’on déterminera 2 (a)En déduire l’inégalité suivante:

Comment définir une fonction g ?

Exemple 2: On considère une fonction g définie sur ] ? ?; 0 [ ?] 0; + ? [ dont la représentation graphique est : Remarque : La double barre dans le tableau de variations indique que la fonction g n’est pas définie en 0, comme le précise l’ensemble sur lequel la fonction g est définie.

Quelle est la forme de la fonction f?

Yˆ ,t i]. La forme de la fonction f est supposée connue, les paramètres k0, k1, …knsont inconnus et à déterminer. On se place ici dans le cas où les fonctions ? ? ? ? ? ? ? ? ? ? ki f ne sont pas indépendantes des ki , la méthode des moindres carrés linéaires ne peut alors pas s’appliquer.

Comment calculer la fonction g o f ?

Les deux fonctions f : X Y et g : Y Z peuvent être composées en appliquant f à l'argument x, puis en appliquant g au résultat. On obtient ainsi la fonction g o f: X Z définie par ( g o f ) ( x ) = g ( f ( x )) pour tout x de l' ensemble X. La notation g o f se lit " g rond f ", ou " f suivie de g ". ( g o f ) ( x) se note aussi g o f (x).

Qu'est-ce que la fonction R?

Cette fonction vous r envoie la liste de toutes les fonctions d’un package donné (le nom est fourni en argument). Elle est très utile lorsque, par exemple, vous avez besoin d’utiliser une des fonctions dont vous savez qu’elle est contenue dans un certain package, mais que son nom exact vous échappe.

CPP - 2013/2014 Fonctions réelles

J. Gillibert

Corrigé du TD n

o9Exercice 1

1. Montrer, à partir de la définition donnée en cours, que :

lim x→0x2= 0

Corrigé :D"après la définition, l"énoncé "limx→0x2= 0» se traduit de la façon suivante :

On souhaite montrer que cet énoncé est vrai, c"est-à-dire que, étant donné un réelε >0, il existe

de prendreδ=⎷ε, d"où le résultat.

2. Même question pour :

lim x→1? 1 +1x = 2 Corrigé :Comme précédemment, l"énoncé se traduit de la façon suivante : 1 +1x

Pour voir que cet énoncé est vrai, il faut montrer que, pour tout? >0, il existeδ >0satisfaisant

l"implication pour tout réelx?R?. Autrement dit, il faut traduire la condition|1x |x-1|. Pour cela, on procède par équivalences successives. Tout d"abord : ????1x

Pour simplifier, on peut supposer que1-ε >0, c"est-à-dire queε?]0,1[. En effet, si l"on peut

rendre|1x -1|plus petit que toute quantitéε?]0,1[, alors on peut aussi le rendre plus petit que

toute quantitéε≥1. De façon plus générale, on peut se restreindre à des valeurs suffisamment

petites deεquand on manipule la définition de limite d"une fonction en un point. Revenons à nos

moutons : si l"on suppose que1-ε >0, alors

Donc, si l"on poseδ= min(ε1+ε,ε1-ε) =ε1+ε(la plus petite des deux quantités en valeur absolue),

1

Exercice 2

1. Traduire par une formule mathématique (avec quantificateurs) l"affirmation

lim x→0ln(1 +x) = 0 Corrigé :Par définition de la limite, l"affirmation se traduit par

2. Déterminer un réelδ >0tel que

surx. Nous avons

Soitδ= min(e10-3-1,1-e-10-3). Alorsδsatisfait bien la propriété voulue. Pour ceux qui sont

curieux de connaître la valeur exacte deδ, on peut faire le raisonnement suivant : l"analyse des

variations de la fonctiont?→et+e-tmontre que celle-ci atteint son minimum en0, donc ce minimum est égal à2. En particuliere10-3+e-10-3≥2. On en déduit queδ= 1-e-10-3.

Exercice 3

a) Nous avons, pour toutx?R, la majoration suivante ????xcos(ex)x 2+ 1? 2+ 1?

D"autre part

xx

2+ 1=1x+1x

donc cette quantité tend vers0quandxtend vers+∞. On en déduit que : lim x→+∞xcos(ex)x

2+ 1= 0.

b) Commesinxest borné,x-sinxtend vers+∞quandxtend vers+∞. On en déduit que lim x→+∞ex-sinx= +∞ c) Pourx >1, la partie entière de1x est nulle. Par conséquent pour toutx >1,x?1x = 0.

Donc la limite cherchée vaut0.

d) Nous avons : sin(xlnx)x =sin(xlnx)xlnxlnx Six→0, alorsxlnx→0. Donc par composition des limites on a : lim x→0sin(xlnx)xlnx= limy→0sinyy = 1

On en déduit que :

lim x→0sin(xlnx)x 2

Exercice 4

Soitf:R→Rla fonction définie par

f(x) =? ?xsix <1 x

8⎷xsix >4

1. L"allure du graphe defa été vue en TD!

2. On note d"abord quefest continue sur l"intervalle]-∞,1[, car elle est égale sur cet intervalle à la

fonctionx?→x. De même, la fonctionfest continue sur les intervalles]1,4[et]4,+∞[car elle est

égale à des fonctions continues sur chacun de ces intervalles. Il reste à étudier la continuité defen

1et en4. En1nous avons :

limx→1x<1f(x) = limx→1x<1x= 1 et limx→1x>1f(x) = limx→1x>1x 2= 1

donc les limites à droite et à gauche defen1sont égales àf(1), ce qui montre quefest continue

en1. On montre de même quefest continue en4. On en conclut quefest continue surR.

Exercice 5

1. La fonctionf:x?→x?x?n"est pas continue. En effet,f(x) = 0pour toutx?[0,1[, d"où :

lim x→1x<1f(x) = 0 et d"autre partf(1) = 1, donc la limite à gauche defen1n"est pas égale àf(1), ce qui montre quefn"est pas continue en1.

2. Nous allons montrer que la fonctiong:x?→ ?x?sin(πx)est continue surR. On note d"abord queg

est continue sur chacun des intervalles de la forme]n,n+ 1[avecn?Z. Il reste à montrer queg est continue en chaque entier relatif. Soitn?Z, alors lim x→nxng(x) =n·0 = 0

etg(n) =nsin(nπ) = 0. Doncga des limites à droite et à gauche ennqui sont égales àg(n), ce

qui montre quegest continue enn.

Exercice 6

On considère la fonctionfdéfinie surRparf(x) =xsinx.

1. Pour toutn?N, on posexn=π2

+ 2nπ. Alors la suite(xn)tend vers+∞, etsin(xn) = 1pour toutn, donc f(xn) =xnsin(xn) =xn doncf(xn)tend vers+∞.

2. Pour toutn?N, on poseyn= 2nπ. Alors la suite(yn)tend vers+∞, etsin(yn) = 0pour toutn,

donc f(yn) =ynsin(yn) = 0 doncf(yn)tend vers0.

3. Si la fonctionfavait une limite en+∞, alors (d"après le critère séquentiel) les suitesf(xn)etf(yn)

tendraient toutes les deux vers cette limite. Orf(xn)etf(yn)n"ont pas la même limite, doncfn"a pas de limite en+∞. 3

Exercice 7

On définit deux suites(un)n≥1et(vn)n≥1en posant : u n=12nπetvn=1π 2 + 2nπ. Ces deux suites tendent vers0quandntend vers+∞. De plus cos ?1u n? = cos(2nπ) = 1etcos?1v n? = cos?π2 + 2nπ? = 0

Par un raisonnement semblable à celui de l"exercice précédent, on en déduit que la fonctionx?→cos?1x

n"admet pas de limite en0.

Exercice 8

a) D"après le cours, la fonctionf1est prolongeable par continuité en0si et seulement si elle a une

limite finie en0. Or nous avons la majoration : Commesinxtend vers0quandxtend vers0, il en résulte quef1tend vers0en0. Donc on peut prolongerf1par continuité en0en posant :f1(0) = 0. b) Soitg:R→Rla fonction définie par g(x) = lnex+e-x2 Alorsgest dérivable surR, etg(0) = 0. La fonctionf2s"écrit f

2(x) =g(x)x

=g(x)-g(0)x On reconnaît le taux d"accroissement degentre0etx. Par conséquent,f2admet une limite finie en0, égale àg?(0). Calculons doncg?surR g ?(x) =? lnex+e-x2 =e x-e-x2 e x+e-x2 =ex-e-xe x+e-x Doncg?(0) = 0. Ainsi, en posantf2(0) = 0nous obtenons une fonctionf2continue surR. c) La fonctionf3est définie et continue surR\ {-1,1}. De plus, on calcule que : f

3(x) =11-x-21-x2=1 +x-2(1-x)(1 +x)=-1 +x(1-x)(1 +x)=-1(1 +x).

On en déduit quef3a pour limite-12

quandxtend vers1. Et donc en posantf3(1) =-12 nous obtenons une fonction continue surR\ {-1}. Par contre, en-1la fonctionf3ne peut pas

être prolongée par continuité, car elle n"admet pas une limite finie en ce point. Doncf3n"est pas

prolongeable par continuité surR.

Exercice 9

Soit f(x) =cosx1 +x2

1. Nous avons

????cosx1 +x2? car|cosx|est majoré par1et1 +x2est minoré par1. 4

2. Comme la fonctionfest majorée par1, on sait queSupx?Rf(x)est inférieur ou égal à1. D"autre

part on constate quef(0) = 1, donc1est à la fois un majorant et une valeur de la fonctionf. Par conséquent,Supx?Rf(x) = 1.

Exercice 10

Soitf:R→Rune fonction périodique de périodeT >0. On suppose quefadmet une limite finie (que

nous noterons?) quandxtend vers+∞. Nous allons montrer quefest constante. Soitx0?R, alors la suitex0+nTtend vers+∞, donc la suitef(x0+nT)converge vers?. D"autre part, on montre par récurrence que : f(x0+nT) =f(x0)pour toutn?N

c"est-à-dire que la suitef(x0+nT)est constante égale àf(x0). Doncf(x0) =?. Comme ce raisonnement

est valable pour n"importe quelle valeur dex0, on en déduit quefest constante égale à?.

Exercice 11

La fonctionf(x)-xétant bornée sur[x0,+∞[, il existe un réelMtel que

En divisant parxon trouve

?x≥x0,????f(x)x

Quand on fait tendrexvers+∞,Mx

tend vers0, donc|f(x)x -1|tend lui aussi vers0, d"où : lim x→+∞f(x)x = 1.

Exercice 12

1. On considère la fonctionfdonnée par

f(x) =? ⎷1-x2si|x|<1 ax

2+bx+csi|x| ≥1

Cette fonction est continue sur l"intervalle]-1,1[car elle est égale à la fonctionx?→⎷1-x2sur

cet intervalle. De même, elle est continue sur les intervalles]- ∞,-1[et]1,+∞[car elle est égale

à la fonctionx?→ax2+bx+csur ces intervalles. On en déduit quefest continue surRsi et seulement si elle est continue en-1et en1. Calculons les limites à droite et à gauche defen-1: lim x→-1x<-1f(x) = limx→-1x<-1ax

2+bx+c=a-b+c=f(-1)

et limx→-1x>-1f(x) = limx→-1x>-1?1-x2= 0 Doncfest continue en-1si et seulement sia-b+c= 0. Par un calcul semblable, on trouve que fest continue en1si et seulement sia+b+c= 0. Au final, pour quefsoit continue il faut que a,betcsoient solution du système?a-b+c= 0 a+b+c= 0 Finalement, on se demande si ce système admet des solutions. En additionnant les deux équation on trouve quea+c= 0, en les soustrayant on trouve queb= 0. Donc ce système admet une infinité de solutions en prenantb= 0eta=-c. 5

2. Soitn?N. D"après la formule du binôme de Newton nous avons :

(1 +x)n= 1 +nx+?n 2? x

2+···+nxn-1+xn

d"où : (1 +x)n-1x =n+?n 2? x+···+nxn-2+xn-1 Cette quantité tend versnquandxtend vers0. Donc on peut prolongerfpar continuité en0en posantf(0) =n.

Exercice 13

Soit?la limite (finie) defenx0. Prenonsε= 1dans la définition de la limite. Alors il existeδ >0tel

que, pour toutx?D:

C"est-à-dire que

Doncfest bornée dans le voisinageV= [x0-δ,x0+δ]dex0, ce qu"on voulait.

Exercice 14

1. Il suffit de montrer que tout intervalle de la forme]a,b[contient une infinité de rationnels et une

infinité d"irrationnels. Commençons par remarquer que : - la somme de deux nombres rationnels est un nombre rationnel; - la somme d"un nombre rationnel et d"un nombre irrationnel est un nombre irrationnel.

On distingue à présent deux cas :

(a) Le réelaest rationnel. Alors la suite?a+1n n≥1est une suite de nombres rationnels qui décroît

versa. L"intervalle]a,b[contient donc une infinité de valeurs de cette suite (plus précisément,

toutes les valeurs telles quensoit strictement supérieur à la partie entière de1b-a). De même,

la suite? a+⎷2 n n≥1est une suite de nombres irrationnels qui décroît versa, donc l"intervalle ]a,b[contient une infinité de valeurs de cette suite. (b) Le réelaest irrationnel. Il suffit alors de montrer l"existence d"un nombre rationnelcdans

l"intervalle]a,b[, puis d"appliquer le résultat précédent à l"intervalle]c,b[. Pour montrer l"exis-

tence dec, on procède comme suit : sib-a >1, alors il existe un nombre entier strictement compris entreaetb, donc c"est gagné. Dans le cas contraire, commeb-aest strictement positif, on peut toujours choisir un entierq≥2tel queq(b-a)>1. Mais alors il existe un nombre entier (que l"on notep) strictement compris entreqaetqb. Il en résulte que a < pq < b ce qu"on voulait.

2. En déduire que la fonctionδdéfinie surRpar

δ(x) =?1six?Q

0six??Q

est discontinue en tout point deR. 6quotesdbs_dbs26.pdfusesText_32
[PDF] soit f et g deux fonctions définies sur r par

[PDF] on considere les fonctions f et g

[PDF] calcul charge maximale dutilisation

[PDF] tutoriel mblock pdf

[PDF] mblock programme

[PDF] mblock francais

[PDF] questionnaire de préparation au mariage

[PDF] comment vivre les fiançailles chrétiennes pdf

[PDF] comment vivre ses fiancailles

[PDF] plan comptable ohada revisé

[PDF] comment reussir ses fiancailles pdf

[PDF] enseignement biblique sur les fiançailles pdf

[PDF] mbot college

[PDF] composition des applications

[PDF] mcdonalds présentation de lentreprise