[PDF] Fonctions : symétries et translations





Previous PDF Next PDF



Corrigé du TD no 11

Dans tous les cas la formule est bien vérifiée. 2. Soient f et g deux fonctions continues D ? R. Soit max(fg) la fonction définie par max(f



Chapitre 3 Dérivabilité des fonctions réelles

Soit f : I ? R une fonction et soit x0 ? I. On dit que f est dérivable Soient f



Corrigé du TD no 9

Exercice 4. Soit f : R ? R la fonction définie par f(x) = Donc g a des limites à droite et à gauche en n qui sont égales à g(n) ce.



FONCTIONS POLYNOMES DU SECOND DEGRE

Une fonction polynôme de degré 2 f est définie sur ? Soit la fonction f définie sur ? par ... f (x) = ?x2 + 2x + 2 g(x) = x2 ?3x + 5.



Fonctions : symétries et translations

Feb 27 2017 Soit les fonctions f et g définies sur R par : f(x) = x et g(x) = x. 2. On a par exemple : 1. 2. > (12). 2. ? f (12) > g (12) et 2 < 22.



EX 1 : ( 2 points ) Soit f et g les fonctions définies sur R par f (x) = 2 et

EX 1 : ( 2 points ) Soit f et g les fonctions définies sur R par f (x) = ex +e?x. 2 et g (x) = ex ?e?x. 2. Les affirmations suivantes sont -elles vraies 



Série dexercices no2 Les fonctions Exercice 1 : images et

Calculer le domaine de définition des fonctions f définies de la façon suivante : Soit f : R ! R une fonction impaire sur R et croissante sur R+.



FONCTIONS DE REFERENCE

Démontrer que la fonction f définie sur R par f (x) = x2 ? 8x + 3 est strictement croissante sur l'intervalle 4;+????? . Soit a et b deux nombres 



TD 4 Convolution

http://math.univ-lyon1.fr/~mironescu/resources/maths4_td_4_support.pdf



Généralités sur les fonctions

Définition 1 : Soit f une fonction définie sur un ensemble Df et soit I un intervalle de R inclu dans Df . La restriction de f à I est la fonction g définie 



Méthodes pour les équations fonctionnelles (2) - ac-bordeauxfr

On se propose de déterminer toutes les fonctions f de R dans R continues sur R différentes de la fonction nulle et vérifiant pour tout réel x l’équation fonctionnelle f (x y) = f (x) f (y) On note S l’ensemble des fonctions f remplissant ces conditions Soit f une fonction élément de S 1



Exo7 - Exercices de mathématiques

Soient les fonctions dé?nies sur R f(x)=x g(x)=x2 et h(x)=ex; Justi?er qu’elles sont intégrables sur tout intervalle fermé borné de R En utilisant les sommes de Riemann calculer les intégrales R 1 0 f(x)dx R 2 1 g(x)dx et R x 0 h(t)dt Indication H Correction H Vidéo [002082] Exercice 3 Soit f : [a;b]!R une fonction continue



GENERALITES SUR LES FONCTIONS

Courbes représentatives des fonctions f + g et f – g On obtient les courbes représentatives de f + g [resp f – g] en additionnant [resp soustrayant] les ordonnées des points de C f et de C g ayant la même abscisse Remarque : Si deux fonctions ont le même sens de variation sur un intervalle I alors la fonction f + g garde ce sens de



Chapitre 3 D´ erivabilit´ e des fonctions r´ eelles

Soient fg : I ? R deux fonctions et soit x 0 ? I On suppose que f et g sont d´erivables en x 0 Alors (1) f +g est d´erivable en x 0 et (f +g) ?(x 0) = f ?(x 0)+g (x 0) (2) fg est d´erivable en x 0 et (fg)?(x 0) = f ?(x 0)g(x 0)+f(x 0)g?(x 0) (3) si g(x 0) 6= 0 alors f g est d´erivable en x 0 et µ f g ¶? (x 0) = f



Searches related to soit f et g les fonctions définies sur r par PDF

Soit n>2 un entier ?xé et f : R+ =[0;+¥[! R la fonction dé?nie par la formule suivante: f(x)= 1+xn (1+x)n; x >0: 1 (a)Montrer que f est dérivable sur R+ et calculer f0(x) pour x >0: (b)En étudiant le signe de f0(x)sur R+;montrer que f atteint un minimum sur R+ que l’on déterminera 2 (a)En déduire l’inégalité suivante:

Comment définir une fonction g ?

Exemple 2: On considère une fonction g définie sur ] ? ?; 0 [ ?] 0; + ? [ dont la représentation graphique est : Remarque : La double barre dans le tableau de variations indique que la fonction g n’est pas définie en 0, comme le précise l’ensemble sur lequel la fonction g est définie.

Quelle est la forme de la fonction f?

Yˆ ,t i]. La forme de la fonction f est supposée connue, les paramètres k0, k1, …knsont inconnus et à déterminer. On se place ici dans le cas où les fonctions ? ? ? ? ? ? ? ? ? ? ki f ne sont pas indépendantes des ki , la méthode des moindres carrés linéaires ne peut alors pas s’appliquer.

Comment calculer la fonction g o f ?

Les deux fonctions f : X Y et g : Y Z peuvent être composées en appliquant f à l'argument x, puis en appliquant g au résultat. On obtient ainsi la fonction g o f: X Z définie par ( g o f ) ( x ) = g ( f ( x )) pour tout x de l' ensemble X. La notation g o f se lit " g rond f ", ou " f suivie de g ". ( g o f ) ( x) se note aussi g o f (x).

Qu'est-ce que la fonction R?

Cette fonction vous r envoie la liste de toutes les fonctions d’un package donné (le nom est fourni en argument). Elle est très utile lorsque, par exemple, vous avez besoin d’utiliser une des fonctions dont vous savez qu’elle est contenue dans un certain package, mais que son nom exact vous échappe.

Fonctions : symétries et translations DERNIÈRE IMPRESSION LE27 février 2017 à 16:06

Fonctions : symétries et

translations

Table des matières

1 Définition2

1.1 Fonction numérique. . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Ensemble de définition. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Comparaison de fonctions. . . . . . . . . . . . . . . . . . . . . . . . 2

2 Parité d"une fonction4

2.1 Fonction Paire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Fonction impaire. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Autres symétries5

3.1 Symétrie par rapport à un axe vertical. . . . . . . . . . . . . . . . . 5

3.2 Symétrie par rapport à un point. . . . . . . . . . . . . . . . . . . . . 6

3.3 Des représentations déduites par symétrie. . . . . . . . . . . . . . . 7

4 Translation9

4.1 Translations horizontales. . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2 Translations verticales. . . . . . . . . . . . . . . . . . . . . . . . . . 9

PAUL MILAN1VERS LE SUPÉRIEUR

1. DÉFINITION

1 Définition

1.1 Fonction numérique

Définition 1 :Unefonctionnumériquefd"unevariableréellexestunerelation qui à un nombre réelxassocie un unique nombre réelynotéf(x). On écrit alors : f:RouDf-→R x?-→f(x) ?Il faut faire la différence entre la fonctionfqui représente une relation etf(x) qui représente l"image dexparfqui est un nombre réel.

Exemple ::

•f(x) =3x-7fest une fonction affine (droite)

•f(x) =5x2-2x+1fest une fonction du second degré (parabole) •f(x) =x+22x-3fest une fonction homographique (hyperbole) •f(x) =e-x2fonction de Gauss (courbe en cloche)

1.2 Ensemble de définition

Définition 2 :L"ensemble définition d"une fonctionfest l"ensemble des va- leurs de la variablexpour lesquelles la fonction est définie

Exemple :

•Soit la fonctionfdéfinie parf(x) =⎷4-xa pour ensemble de définition : D f=]-∞; 4](4-x?0) •Soit la fonctiongdéfinie parg(x) =3x2-5x-6a pour ensemble de défini- tion :Dg=R-{-1 ; 6}(x2-5x-6?=0,x=-1 racine évidente) •Soit la fonctionhdéfinie parh(x) =ln(x+1)a pour ensemble de définition D h=]-1 ;+∞[(x+1>0)

1.3 Comparaison de fonctions

Définition 3 :On dit que deux fonctionfetgsont égales si et seulement si : •Elles ont même ensemble de définition :Df=Dg

•Pour toutx?Df,f(x) =g(x)

PAUL MILAN2VERS LE SUPÉRIEUR

1. DÉFINITION

Exemple :Les fonctionfetgdéfinies ci-dessous, sont-elles égales? f(x) =? x-1 x+3etg(x) =⎷ x-1⎷x+3

Déterminons leur ensemble de définition :

•Pourf, on doit avoir :x-1x+3?0, d"oùDf=]-∞;-3[?[1 ;+∞[ •Pourg, on doit avoir :x-1?0 etx+3>0, d"oùDg= [1 ;+∞[ •On a donc :Df?=Dg. Les fonction ne sont donc pas égales. ?On remarquera cependant que sur[1 ;+∞[, on af(x) =g(x) Définition 4 :Soit I un intervalle et soitfetgdeux fonctions définies sur I.

On dit que sur I :

•f?g? ?x?I,f(x)?g(x).

•f?0? ?x?I,f(x)?0.

•festmajorée? ?M?R,?x?I,f(x)?M.

•festminorée? ?m?R,?x?I,m?f(x).

•festbornée? ?m,M?R,?x?I,m?f(x)?M.

Remarque :La relation d"ordre pour les fonctions n"est pas totale car deux fonc- tions ne sont pas toujours comparables. Soit les fonctionsfetgdéfinies surRpar :f(x) =xetg(x) =x2. On a par exemple : 1

2>?12?

2 ?f?12? >g?12? et 2<22?f(2)Exemple : •Soit la fonctionfdéfinie surRpar :f(x) =x(1-x). Démontrer quefest majorée surR.

On met la fonction sous la forme canonique :

f(x) =-x2+x=-(x2-x) =-? x-1 2? 2 +14 La parabole représentantfest tournée vers le bas et de sommet S?1 2;14?

La fonctionfest donc majorée par1

4. •Montrer que la fonctiongdéfinie surRparg(x) =4sinx-3 est bornée.

On a pour toutx?R:

-1?sinx?1? -4?4sinx?4? -7?4sinx-3?1? -7?g(x)?1 gest donc bornée par[-7 ; 1].

PAUL MILAN3VERS LE SUPÉRIEUR

2. PARITÉ D"UNE FONCTION

M fmajorée m fminorée M m fbornée Propriété 1 :Sifune fonction est monotone sur un intervalle I= [a;b]alors fest bornée. Démonstration :Supposons quefest croissante sur[a;b](le casfdécrois- sante se traite de façon analogue). Soitx?[a;b], i.e.a?x?b, commefest croissante, elle conserve la relation d"ordre, d"oùf(a)?f(x)?f(b). On peut prendrem=f(a)etM=f(b),fest donc bornée.

2 Parité d"une fonction

2.1 Fonction Paire

Définition 5 :On dit qu"une fonctionfest paire surDfssi l"on a : •Son ensemble de définitionDfest symétrique par rapport à l"origine.

•?x?Df,f(-x) =f(x)

Exemple :Les fonctions suivantes sont paires sur leur ensemble de définition: f

1(x) =x2,f2(x) =5x4+3x2-1,f3(x) =cosx,f4(x) =sinx

x,f5(x) =e-x2 Remarque :Le terme " pair » doit son nom au fait que les fonctions polynômes qui ne contiennent que des termes de puissances paires vérifient :f(-x) =f(x)

Propriété 2 :La représentation

d"une fonction paire estsymétrique par rapport à l"axe des ordonnées. ??x -x f(-x) =f(x)MM"O

PAUL MILAN4VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

2.2 Fonction impaire

Définition 6 :On dit qu"un fonctionfest impaire si et seulement si l"on a : •Son ensemble de définitionDfest symétrique par rapport à l"origine.

•?x?Df,f(-x) =-f(x)

Exemples :

Les fonctions suivantes sont impaire sur leur ensemble de définition : f

1(x) =x3,f2(x) =sinx,f3(x) =tanx,f(x)4=1

x,f5(x) =4x3-3x Remarque :Le terme " impair » doit son nom au fait que les fonctions po- lynômes qui ne contiennent que des termes de puissances impaires vérifient : f(-x) =-f(x)

Propriété 3 :La représentation

d"une fonction impaire estsymétrique par rapport à l"origine. x -x f(x)f(-x) MM" O

3 Autres symétries

3.1 Symétrie par rapport à un axe vertical

Théorème 1 :Soit A(a; 0)dans le repère(O,?ı,??). Si un point M a pour coordonnées(x;y)dans un repère(O,?ı,??)et(X;Y)dans un repère(A,?ı,??), alors, on a les relations :?X=x-a Y=y SoitCfla courbe de la fonctionfdans le repère(O,?ı,??). La courbeCfest symé- trique par rapport à l"axex=asi et seulement si la fonctiongdont la courbe estCfdans le repère(A,?ı,??)est paire.

Remarque :On peut aussi montrer quef(a+x) =f(a-x)

PAUL MILAN5VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

Exemple :Soit la fonctionfdéfinie surRparf(x) =x2-2x-1. Montrer queCfest symétrique par rapport à l"axex=1.

On change de repère passant de

(O,?ı,??)à(A,?ı,??). On a les relations suivantes : ?X=x-1

Y=f(x)?

x=X+1 g(X) = (X+1)2-2(X+1)-1 ?x=X+1 g(X) =X2+2X+1-2X-2-1? x=X+1 g(X) =X2-2 1 -1 -21 2 3-1? x X=x-1 x=1 A M Comme la fonction carrée est paire, la fonctiongest paire et donc la courbeCfest symétrique par rapport à la droitey=1. Remarque :Autre méthode :f(1+x) =f(1-x)en effet : f(1+x) = (1+x)2-2(1+x)-1=1+2x+x2-2-2x-1=x2-2 f(1-x) = (1-x)2-2(1-x)-1=1-2x+x2-2+2x-1=x2-2

3.2 Symétrie par rapport à un point

Théorème 2 :Soit I(a;b)dans le repère(O,?ı,??). Si un point M a pour coordonnées(x;y)dans un repère(O,?ı,??)et(X;Y)dans un repère(I,?ı,??), alors, on a les relations?X=x-a Y=y-b SoitCfla courbe de la fonctionfdans le repère(O,?ı,??). La courbeCfest symé- trique par rapport au point I(a;b)si et seulement si la fonctiongdont la courbe estCfdans le repère(I,?ı,??)est impaire. Remarque :On peut aussi montrer quef(a+x) +f(a-x) =2b Exemple :Soit la fonctionfdéfinie surR-{-1}tel quef(x) =2x-1x+1. Montrer queCfest symétrique par rapport au point I(-1 ; 2).

On change de repère passant de

(O,?ı,??)à(I,?ı,??). On a les relations suivantes :

PAUL MILAN6VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

?X=x+1

Y=f(x)-2????x=X-1

g(X) =2(X-1)-1

X-1+1-2????x=X-1

g(X) =2X-3X-2 ?x=X-1 g(X) =2X-3-2X

X????x=X-1

g(X) =-3X Comme la fonction inverse est impaire, la fonctiongest impaire et donc la courbe deCfest symétrique par rapport au point I.

Remarque :Autre méthode :

f(-1+x) +f(-1-x)

2(-1+x)

-1+x+1+2(-1-x)-1-x+1 -2+2x x--2-2xx =4=2×2246 -22 4-2-4 x

X=x+1yY=y-2MIM"

O

3.3 Des représentations déduites par symétrie

Soit la fonctionfdéfinie surRparf(x) =x3-3x2+1 représentée ci-dessous.

1) Déduire les courbes des fonctionsg,

hetkdéfinies surRpar : a)g(x) =-f(x) b)h(x) =|f(x)| c)k(x) =f(-x)

2) On définie surRla fonctionFpar :

F(x) =f(|x|).

a) Démontrer que la fonctionFest paire b) En déduire la représentation deF 12 -1 -2 -3 -41 2 3-1-2 Cf O 1) a)

PAUL MILAN7VERS LE SUPÉRIEUR

3. AUTRES SYMÉTRIES

La courbeCgest l"image deCfpar

lasymétrie par rapport à l"axe des abscisses. 123
-1 -2 -3 -41 2 3-1-2 CfCg O b) On déduit la courbeChen faisant une symétrie par rapport

àl"axedesabscissesuniquement

lorsquef(x)<0. 123
-1 -2 -31 2 3-1-2 O Cf Ch c) La courbeCkest l"image deCfpar lasymétrie par rapport à l"axe des ordonnées. 123
-1 -2 -31 2 3-1-2-3 O CfCk

2) a) On a pour toutxréel :F(-x) =f(| -x|) =f(|x|) =F(x)

La fonctionFest donc paire.

b) On déduit la courbeCFde la courbe C fen faisant une symétrie par rap- port à l"axe des ordonnées unique- ment six<0 123
-1 -2 -31 2 3-1-2-3 O Cf CF

PAUL MILAN8VERS LE SUPÉRIEUR

4. TRANSLATION

4 Translation

Théorème 3 :Soit une fonctionfdéfinie sur un intervalleI. SoitCfsa courbe représentative. Soit les les fonctiongeth, les fonctions définie respectivement surJetItel queJ est l"intervalle I décalé vers la droite deapar : g(x) =f(x-a)eth(x) =f(x) +b a ?ıetb??de la courbeCf

4.1 Translations horizontales

12 -1 -2 -3 -41 2 3 4 5-1-22?ı CfCg O f(x) =x3-3x2+1 g(x) =f(x-2)=(x-2)3-3(x-2)2+1 12 -1quotesdbs_dbs31.pdfusesText_37
[PDF] soit f et g deux fonctions définies sur r par

[PDF] on considere les fonctions f et g

[PDF] calcul charge maximale dutilisation

[PDF] tutoriel mblock pdf

[PDF] mblock programme

[PDF] mblock francais

[PDF] questionnaire de préparation au mariage

[PDF] comment vivre les fiançailles chrétiennes pdf

[PDF] comment vivre ses fiancailles

[PDF] plan comptable ohada revisé

[PDF] comment reussir ses fiancailles pdf

[PDF] enseignement biblique sur les fiançailles pdf

[PDF] mbot college

[PDF] composition des applications

[PDF] mcdonalds présentation de lentreprise