[PDF] Exercices Corrigés Matrices Exercice 1 – Considérons les matrices





Previous PDF Next PDF



LES DÉTERMINANTS DE MATRICES

2- Le déterminant d'une matrice . 2. 3- Calcul du déterminant pour une matrice ... Déterminants de matrices carrées de dimensions 4x4 et plus .



Généralités sur les matrices

2. Multiplication de deux matrices et de dimensions respectives et. : ......... 3 ... Trace d'une matrice carrée d'ordre n (notée ) : .



Déterminants 1 Cas dune matrice dordre 2 2 Cas dune matrice d

Dans tout ce qui suit nous ne considérerons que des matrices carrées. En notant Aij la matrice d'ordre 2 obtenue en supprimant la i`eme ligne et la ...



Chapitre 6. Déterminant dune matrice carrée

2 1. 1 3 \\. =?? det (. 4 1. ?1 3). =?? A quoi ça sert ? Ca sert



Les matrices - Lycée dAdultes

. est une matrice diagonale. Définition 2 On appelle matrice identité d'ordre n la matrice carrée dont les éléments de la diago- nale sont égaux 



Diagonalisation dune matrice carrée

2. Polynômes caractéristique. Soit A une matrice carrée d'ordre n . ? est une valeur propre de A et X un vecteur propre de. A associé à ? donc on a :.



Exercices Corrigés Matrices Exercice 1 – Considérons les matrices

Si elles ont un sens calculer les matrices AB



Clipedia

À présent que nous avons vu comment calculer l'inverse d'une matrice carrée (nous nous sommes limités au cas 2 × 2 mais nous aurons l'occasion de voir que 



MATRICES

Propriété : La matrice est inversible si et seulement si



Considérons les matrices `a coefficients réels : A = - ( 2 1

Exercice 12 – Soit A et B deux matrices carrées de même ordre on suppose que la matrice. AB est inversible d'inverse la matrice C. Montrer alors que B est 



Chapitre 3 : Les matrices - Claude Bernard University Lyon 1

Définition 2 Une matrice carrée D = dij est dite diagonale si tous ses éléments non diagonaux sont nuls Une telle matrice est fréquemment notée D =diag(d11d22 dnn) où certains ou tous les scalaires dii peuvent être égaux à zéro Exemples 1 100 030 002 = D 2 40 05 = ? D 3 1000 0000 0020 0005 = ? D 3 3 Matrice Identité



Matrice carrées PrepAcademy

Trace d’une matrice carrée d’ordre n # L : = Ü Ý (notée P N ;) : Somme des éléments de la diagonale principale i e trA L a 5 5a 6 6?a l l Propriétés : 1 trA E B L trA E trB 2 tr cA L c trA 3 Forme échelonnée d’une matrice



Exo7 - Cours de mathématiques

• La matrice (de taille n p) dont tous les coef?cients sont des zéros est appelée la matrice nulle et est notée 0np ou plus simplement 0 Dans le calcul matriciel la matrice nulle joue le rôle du nombre 0 pour les réels



Les Matrices Cours - Lycée d'Adultes

–Une matrice ne contenant qu’une colonne (matrice m×1) est appelée matrice-colonne ou encore vecteur-colonne –Unematriceayantlemêmenombredelignesetdecolonnes(matricem×m)estappeléematricecarrée L’ensembledes matricescarrées d’ordre mà coe?cients réelssenote M mm(



Chapitre 13 : Matrices - résumé de cours

• Toute matrice carrée s’écrit comme combinaison linéaire des matrices (E ij) 1 ij n • Soit A et B deux matrices carrées d’ordre n les produits matriciels AB et BA existent et donne une matrice carrée d’ordre n Le produit est donc une opération interne dans n ( )



Searches related to matrice carrée d+ordre 2 PDF

Le produit est automatiquement bien défini pour les matricées carrées d’ordre L’élement neutre est () ( ) On l’appelle la matrice d’identité d’ordre On a une structure d’algèbre sur ( ) isomorphe à ( ) si ii) Ce qui ne marche pas toujours Attention : Le produit n’est pas toujours bien défini : par exemple

Comment faire une matrice carrée d’ordre 3 ?

Il est également possible : en effet cela reste un produit de deux matrices carrées et donne à nouveau, une matrice carrée d’ordre?3. Le produit de A par B est possible car ce sont toutes les deux des matrices carrées d’ordre 3. Ce produit donne une matrice carrée d’ordre 3. Soit une matrice de format 3 × 3.

Comment calculer une matrice carrée ?

Le calcul du produit B × Adonne un résultat différent. Il est également possible : en effet cela reste un produit de deux matrices carrées et donne à nouveau, une matrice carrée d’ordre?3. Le produit de A par B est possible car ce sont toutes les deux des matrices carrées d’ordre 3. Ce produit donne une matrice carrée d’ordre 3.

Quel est le produit d’une matrice carrée d’ordre n par la matrice identité ?

Le produit d’une matrice A carrée d’ordre n par la matrice identité donne toujours la matrice A. Et ce produit est commutatif. Il s’agit du seul cas (avec le produit par la matrice nulle et les puissances de matrices) où il peut être commutatif (à part les hasards du calcul qui restent exceptionnels).

Qu'est-ce que la matrice carrée?

Une matrice dont le nombre de lignes est égal au nombre de colonnes est appelée matrice carrée. Si elle a pour dimension (nn,), on dit alors qu’elle est d’ordre n. Rappelons que l’addition et la multiplication de matrices ne sont pas définies pour des matrices quelconques. Cependant, si on considère uniquement des matrices carrées d’ordre n

Exercices Corriges

Matrices

Exercice 1{Considerons les matrices a coecients reels :

A= 2 1

2 1! ; B= 1 2 24!
C=0 B @1 1 2 1 0 1 11 01 C

A; D=0

B @11 1 1 0 1

0 1 01

C

A; E= 11 1

1 0 1!

Si elles ont un sens, calculer les matricesAB,BA,CD,DC,AE,CE.

Exercice 2{(extrait partiel novembre 2011)

On considere les matrices a coecients reels :

A= 1 1

1 1!

B= 431

2 1 1!

C= 1 2

12! Calculer, s'ils ont un sens, les produitsAB;BA;AC;CA;B2. Exercice 3{On considere les matrices a coecients reels :

A= 1 3

2 4!

B= 431

2 1 1!

C= 43 2 1!

1) Calculer s'ils ont un sens les produitsAB;BA;AC;CA;BC;CB;B2.

2) En deduire, sans plus de calcul, queAetCsont inversibles et preciser leurs inverses.

Exercice 4{SoitAla matrice deM2(R) etBla matrice deM2;3(R) denies par :

A= 4 3

1 1! ; B= 1 0 2 1 11! Si elles ont un sens, calculer les matricesAB,BA,A2,B2etA+ 2Id2.

Exercice 5{SoitA;B;Cles matrices :

A= 22 0

4 22!

2M2;3(R); B=0

B @1 1 1 2 131
C

A2M3;2(R); C= 11

1 2!

2M2;2(R)

Determiner les produits denis 2 a 2 de ces trois matrices. Exercice 6{Ti;j() etant la matrice elementaire qui correspond a ajouter a la ligneile produit parde la ligne j, preciser la matriceT2;1(12 ) deM2;2(R), puis la matriceT1;2(2)T2;1(12 1 Exercice 7{1) Preciser les matrices elementaires deM3;3(R) : D

2(2); T3;2(3); T2;1(2):

2) Calculer la matriceA=T3;2(3)D2(2)T2;1(2).

3) DonnerA1sous forme de produit de matrices elementaires. Puis, calculerA1.

Exercice 8{Appliquer avec precision aux matricesMetNsuivantes l'algorithme du cours qui determine si une matrice est inversible et donne dans ce cas son inverse : M= 23 11!

2M2;2(R)et N= 23

46!

2M2;2(R):

Exercice 9{(extrait partiel novembre 2011)

1) En utilisant l'algorithme du cours, montrer que la matrice suivante est inversible et preciser

son inverse :

A= 1 2

3 4!

2) Puis, donner une expression deA1et deAcomme produit de matrices elementaires.

Exercice 10{1) Appliquer avec precision l'algorithme du cours pour inverser la matrice : M= 11 23!

2M2;2(R):

2 ) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

Exercice 11{) Appliquer avec precision l'algorithme du cours pour inverser la matrice :

M= 2 1

3 2!

2M2;2(R):

Preciser une expression deM1, puis deMcomme produit de matrices elementaires. Exercice 12{SoitAetBdeux matrices carrees de m^eme ordre, on suppose que la matrice ABest inversible d'inverse la matriceC. Montrer alors queBest inversible et preciserA1.

Exercice 13{(extrait partiel novembre 2011)

SoitXetYdeux matrices carrees non nulles de m^eme taille a coecients reels, montrer que siXY= 0, les matricesXetYne sont pas inversibles.

Exercice 14{SoitM=0

B @2 4 1 2 5 1

1 2 11

C A.

1) Montrer en appliquant les algorithmes du cours queMest inversible. Preciser la matrice

M

1ainsi que la decomposition deM1comme produit de matrices elementaires.

2

2) En deduire une decomposition deMcomme produit de matrices elementaires.

3) Montrer que nous avons aussiM=T2;3(1)T1;3(1)T3;1(1)T2;1(1)T1;2(2).

4) En deduire une deuxieme expression deM1comme produit de matrices elementaires.

5) Calculer det(M) et retrouver la valeur deM1en utilisant la formule d'inversion donnee

dans le cours.

Exercice 15{(extrait partiel novembre 2009)

1) Appliquer avec precision l'algorithme du cours pour determiner l'inverseM1de la matrice :

M=0 B @1 2 3 0 1 2

0 4 61

C

A2M3;3(R):

Quelle est la valeur deM1?

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Deduire de la question 1 une matriceXdeM3;3(R)telle que :

2XM=0 B @1 0 0 0 1 0 02 11 C A: Exercice 16{1) Appliquer avec precision l'algorithme du cours pour determiner l'inverse M

1de la matrice :

M=0 B @1 2 3 0 1 1

0 2 31

C

A2M3;3(R):

2) Donner une expression deM1, puis deMcomme produit de matrices elementaires.

3) Verier le calcul en eectuant les calculs des matricesMM1etM1M.

Exercice 17{SoitMla matrice deM3(R) denie par :

M=0 B @1 01 2 3 4

0 1 11

C A:

1) Calculer le determinant deM, sa comatrice et l'inverse deM.

2) Determiner l'inverse deMsous forme de produit de matrices elementaires. EcrireMcomme

produit de matrices elementaires.

3) Resoudre a l'aide de l'inverse deMle systeme suivant oumest un reel xe :

(m)2 6 4x 1x3=m

2x1+ 3x2+ 4x3= 1

+x2+x3= 2m: 3

Correction de l'exercice 1 :

Le lecteur veriera que :

AB= 0 0

0 0! ; BA= 6 3 126!
CD=0 B @0 1 2 1 0 1 21 01
C

A; DC=0

B @123 2 0 2

1 0 11

C

A; AE= 12 3

12 3! Le produitCEn'a pas de sens car la taille des colonnes (a savoir 2) deEest dierent de la taille des lignes (a savoir 3) deC.

Correction de l'exercice 2 :

On trouve :

AB= 22 0

22 0!

AC= 0 0

2 0!

CA= 3 3

33!

Les deux autres produitsB2etBAn'ont pas de sens.

Correction de l'exercice 3 :

1)

AB= 2 0 2

02 2! BAn'a pas de sens car la taille des lignes deBn'est pas egale a celle des colonnes deA.

AC= 2 0

02! =2Id2:

CA= 2 0

02! =2Id2:

CB= 22157

10 7 3!

BCn'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deC. B

2n'a pas de sens car la taille des lignes de deBn'est pas egale a celle des colonnes deB.

2) Nous avons :AC=CA=2Id2, nous en deduisons :

A(12

C) = (12

C)A= Id2:

Il en resulte que la matriceAest inversible, d'inverse : A 1=12

C= 232

112
4

De m^eme :

(12

A)C=C(12

A) = Id2:

Il en resulte que la matriceCest inversible, d'inverse : C 1=12 A= 12 32
12!

Correction de l'exercice 4 :

AB= 7 311

2 13!

La matriceBAn'a pas de sens.

A

2=AA= 139

32!

La matriceB2n'a pas de sens.

A+ 2Id2= 4 3

1 1! + 2 1 0 0 1! = 2 3 1 3!

Correction de l'exercice 5 :

AB= 02

4 14! ; BA=0 B @6 02 10 24

108 61

C

A; CA= 24 2

10 24!

BC=0 B @2 1 3 3 271
C

A; C2= 03

3 3!

Les matricesAC,CB,A2etB2ne sont pas denis.

Correction de l'exercice 6 :

T

2;1(12

) =T2;1(12 )I2=T2;1(12 ) 1 0 0 1! = 1 0 12 1! De m^eme, en utilisant les proprietes des actions a gauche par les matrices elementaires, on obtient : T

1;2(2)T2;1(12

) =T1;2(2) 1 0 12 1! = 02 12 1!

Correction de l'exercice 7 :

1.1) 5 D

2(2) =D2(2)I3=D2(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 02 0

0 0 11

C A: T

3;2(3) =T3;2(3)I3=T3;2(3)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 0 1 0

0 3 11

C A: T

2;1(2) =T2;1(2)I3=T2;1(2)0

B @1 0 0 0 1 0

0 0 11

C A=0 B @1 0 0 2 1 0

0 0 11

C A: 1.2)

A=T3;2(3)D2(2)T2;1(2) =T3;2(3)D2(2)0

B @1 0 0 2 1 0

0 0 11

C A:

A=T3;2(3)0

B @1 0 0 42 0

0 0 11

C A: A=0 B @1 0 0 42 0

126 11

C A: 1.3) 6 A

1= (T3;2(3)D2(2)T2;1(2))1

=T2;1(2)1D2(2)1T3;2(3)1 =T2;1(2)D2((1=2))T3;2(3) =T2;1(2)D2((1=2))T3;2(3)0 B @1 0 0 0 1 0

0 0 11

C A =T2;1(2)D2((1=2))0 Bquotesdbs_dbs24.pdfusesText_30
[PDF] matrice ligne

[PDF] matrice calcul

[PDF] matrice multiplication

[PDF] comment savoir si il prend du plaisir

[PDF] signes qu'un homme prend du plaisir

[PDF] arts visuels cycle 2 arbre printemps

[PDF] arts visuels arbres cycle 2

[PDF] arbre arts visuels cycle 3

[PDF] arbres arts visuels

[PDF] les arbres en arts plastiques ? lécole

[PDF] arbre arts visuels cycle 2

[PDF] arbre arts plastiques maternelle

[PDF] comment rediger un exercice de math

[PDF] redaction maths prepa

[PDF] académie de créteil recrutement sans concours