[PDF] Corrigé du TD no 9 Donc par composition des limites





Previous PDF Next PDF



Fonction logarithme népérien.

La droite d'équation x=0 est une asymptote verticale et la droite d'équation y=0 est une asymptote horizontale à la courbe représentative de f . 4. f (x)=ln( x.



FONCTION LOGARITHME NEPERIEN (Partie 2)

x . Démonstration : Nous admettons que la fonction logarithme népérien est dérivable sur 0;+????? . Posons f (x) = eln x . Alors f '(x) = (ln x)'eln x 



Liban mai 2019

1. On considère la fonction f définie sur ]0;1] par : f (x)=x(1?ln(x))2 .



formulaire.pdf

x?+? ex/xn = +? lim x?+? ln(x)/xn = 0. Dérivées. Fonctions usuelles Fonctions usuelles. R`egles de dérivation. Exemples f(x) f?(x) f(x) f?(x) k. 0 x.



formulaire.pdf

x?+? ex/xn = +? lim x?+? ln(x)/xn = 0. Dérivées. Fonctions usuelles Fonctions usuelles. R`egles de dérivation. Exemples f(x) f?(x) f(x) f?(x) k. 0 x.



Corrigé du TD no 9

Donc par composition des limites on a : lim x?0 sin(x ln x) x ln x En effet f(x)=0 pour tout x ? [0



Fiche technique sur les limites

Les résultats suivants font référence dans de très nombreuses situations. 1.1 Limite en +? et ?? f(x) xn. 1 xn. ? x. 1. ? x ln(x) ex lim x?+? f(x).



EXERCICE 1

f(x) = lnx + x. 1.1. Existence des racines de (En). 1. f est dérivable sur ]0+?[ et f/ (x) = 1 x. + 1 > 0. En 0 : f (x)=ln(x) + x ? ??. En +? : f (x) 



Fonctions convexes telles que f(x+1)-f(x)=ln(x) et f(1)=0

Rappel. Soit f une application définie sur un intervalle ouvert I `a valeurs réelles. Si f est convexe



S Nouvelle Calédonie novembre 2017

5 points. On considère la fonction f définie sur ]0;+?[ par : f (x)=. (ln(x)). 2 x .. On note c la courbe représentative de f dans un repère orthonormé.



Logarithmic Functions - Dartmouth

f(x) = lnx: Let us graph the natural logarithmic function using the numerical table below (with values given to the nearest hundredth: x lnx 0 25 ¡1:39 0 50 ¡0:70 1 00 0 00 2 00 0 70 4 00 1 39 The graph that we get has several important properties First since the domain of lnx is all positive real numbers the graph lies entirely to the



AP CALCULUS AB 2008 SCORING GUIDELINES - College Board

f(x) = lnxy Likewise let the right hand side of the equation be g(x) = lnx + lny where again y is a constant and x is a variable Then by the chain rule for derivatives d dx f(x) = d dx (lnxy) = 1 xy d dx xy = y xy = 1 x: We also have d dx g(x) = d dx (lnx+ lny) = 1 x + 0 = 1 x: Since f and g have the same derivatives on the interval (0;1



AP CALCULUS AB 2008 SCORING GUIDELINES - College Board

ln x fx x = for together with a formula for x >0 f ?(x) Part (a) asked for an equation of the line tangent to the graph of f at x =e2 In part (b) students needed to solve fx?( )=0 and determine the character of this critical point from the supplied f ?(x) In part (c)



Probability Distributions - Duke University

Amodeof a probability density functionfX(x) is a value ofxsuch that the PDF is maximized; fX(x)dx = 0 x=xmode The mostlikelyvalue of a random quantity is the mode if its distribution multi-modal distribution is a distribution with multiple modes Themedianvaluexmed is is the value ofxsuch that



Consider the function fx x x ln defined for 0

x ln x 3/2/2006 page 6 of 8 Suppose that I wish to find x such that fx 1 Describe an iterative procedure based upon the Newton-Raphson method to do this: xxkk 1 G where G Illustrate one step starting at the “guess” x0 1 x ln x 3/2/2006 page 7 of 8 Newton-Raphson: Solving gx x x ln 1 0 : x gx gx' G

What is LNX FX x?

lnx fx x = for together with a formula for x>0, f?(x). Part (a) asked for an equation of the line tangent to the graph of fat x=e2. In part (b) students needed to solve fx?( )=0 and determine the character of this critical point from the supplied f?(x).

What is the formula for ln(x)?

There is no simple and exact formula. However, x / ln (x) is a good approximation, and it gets better for larger x. The logarithmic integral gives an even better approximation. The logarithmic integral is the area under the curve ln (x), from 2 to x. Note: ln (x) is the natural logarithm function.

How to differentiate ln(x) from first principles?

How to differentiate ln (x) from first principles Begin the derivative of the natural log function by using the first principle definition and substituting f (x) = ln (x) A few techniques are used throughout the process namely log laws, substitution and the limit identity for the exponential function. Music by Adrian von Ziegler

How to find the derivative of ln (6x) (f'(x))?

We can find the derivative of ln (6x) (F' (x)) by making use of the chain rule. Now we can just plug f (x) and g (x) into the chain rule. Now we can just plug f (x) and g (x) into the chain rule. But before we do that, just a quick recap on the derivative of the natural logarithm.

Corrigé du TD no 9

CPP - 2013/2014 Fonctions réelles

J. Gillibert

Corrigé du TD n

o9Exercice 1

1. Montrer, à partir de la définition donnée en cours, que :

lim x→0x2= 0

Corrigé :D"après la définition, l"énoncé "limx→0x2= 0» se traduit de la façon suivante :

On souhaite montrer que cet énoncé est vrai, c"est-à-dire que, étant donné un réelε >0, il existe

de prendreδ=⎷ε, d"où le résultat.

2. Même question pour :

lim x→1? 1 +1x = 2 Corrigé :Comme précédemment, l"énoncé se traduit de la façon suivante : 1 +1x

Pour voir que cet énoncé est vrai, il faut montrer que, pour tout? >0, il existeδ >0satisfaisant

l"implication pour tout réelx?R?. Autrement dit, il faut traduire la condition|1x |x-1|. Pour cela, on procède par équivalences successives. Tout d"abord : ????1x

Pour simplifier, on peut supposer que1-ε >0, c"est-à-dire queε?]0,1[. En effet, si l"on peut

rendre|1x -1|plus petit que toute quantitéε?]0,1[, alors on peut aussi le rendre plus petit que

toute quantitéε≥1. De façon plus générale, on peut se restreindre à des valeurs suffisamment

petites deεquand on manipule la définition de limite d"une fonction en un point. Revenons à nos

moutons : si l"on suppose que1-ε >0, alors

Donc, si l"on poseδ= min(ε1+ε,ε1-ε) =ε1+ε(la plus petite des deux quantités en valeur absolue),

1

Exercice 2

1. Traduire par une formule mathématique (avec quantificateurs) l"affirmation

lim x→0ln(1 +x) = 0 Corrigé :Par définition de la limite, l"affirmation se traduit par

2. Déterminer un réelδ >0tel que

surx. Nous avons

Soitδ= min(e10-3-1,1-e-10-3). Alorsδsatisfait bien la propriété voulue. Pour ceux qui sont

curieux de connaître la valeur exacte deδ, on peut faire le raisonnement suivant : l"analyse des

variations de la fonctiont?→et+e-tmontre que celle-ci atteint son minimum en0, donc ce minimum est égal à2. En particuliere10-3+e-10-3≥2. On en déduit queδ= 1-e-10-3.

Exercice 3

a) Nous avons, pour toutx?R, la majoration suivante ????xcos(ex)x 2+ 1? 2+ 1?

D"autre part

xx

2+ 1=1x+1x

donc cette quantité tend vers0quandxtend vers+∞. On en déduit que : lim x→+∞xcos(ex)x

2+ 1= 0.

b) Commesinxest borné,x-sinxtend vers+∞quandxtend vers+∞. On en déduit que lim x→+∞ex-sinx= +∞ c) Pourx >1, la partie entière de1x est nulle. Par conséquent pour toutx >1,x?1x = 0.

Donc la limite cherchée vaut0.

d) Nous avons : sin(xlnx)x =sin(xlnx)xlnxlnx Six→0, alorsxlnx→0. Donc par composition des limites on a : lim x→0sin(xlnx)xlnx= limy→0sinyy = 1

On en déduit que :

lim x→0sin(xlnx)x 2

Exercice 4

Soitf:R→Rla fonction définie par

f(x) =? ?xsix <1 x

8⎷xsix >4

1. L"allure du graphe defa été vue en TD!

2. On note d"abord quefest continue sur l"intervalle]-∞,1[, car elle est égale sur cet intervalle à la

fonctionx?→x. De même, la fonctionfest continue sur les intervalles]1,4[et]4,+∞[car elle est

égale à des fonctions continues sur chacun de ces intervalles. Il reste à étudier la continuité defen

1et en4. En1nous avons :

limx→1x<1f(x) = limx→1x<1x= 1 et limx→1x>1f(x) = limx→1x>1x 2= 1

donc les limites à droite et à gauche defen1sont égales àf(1), ce qui montre quefest continue

en1. On montre de même quefest continue en4. On en conclut quefest continue surR.

Exercice 5

1. La fonctionf:x?→x?x?n"est pas continue. En effet,f(x) = 0pour toutx?[0,1[, d"où :

lim x→1x<1f(x) = 0 et d"autre partf(1) = 1, donc la limite à gauche defen1n"est pas égale àf(1), ce qui montre quefn"est pas continue en1.

2. Nous allons montrer que la fonctiong:x?→ ?x?sin(πx)est continue surR. On note d"abord queg

est continue sur chacun des intervalles de la forme]n,n+ 1[avecn?Z. Il reste à montrer queg est continue en chaque entier relatif. Soitn?Z, alors lim x→nxng(x) =n·0 = 0

etg(n) =nsin(nπ) = 0. Doncga des limites à droite et à gauche ennqui sont égales àg(n), ce

qui montre quegest continue enn.

Exercice 6

On considère la fonctionfdéfinie surRparf(x) =xsinx.

1. Pour toutn?N, on posexn=π2

+ 2nπ. Alors la suite(xn)tend vers+∞, etsin(xn) = 1pour toutn, donc f(xn) =xnsin(xn) =xn doncf(xn)tend vers+∞.

2. Pour toutn?N, on poseyn= 2nπ. Alors la suite(yn)tend vers+∞, etsin(yn) = 0pour toutn,

donc f(yn) =ynsin(yn) = 0 doncf(yn)tend vers0.

3. Si la fonctionfavait une limite en+∞, alors (d"après le critère séquentiel) les suitesf(xn)etf(yn)

tendraient toutes les deux vers cette limite. Orf(xn)etf(yn)n"ont pas la même limite, doncfn"a pas de limite en+∞. 3

Exercice 7

On définit deux suites(un)n≥1et(vn)n≥1en posant : u n=12nπetvn=1π 2 + 2nπ. Ces deux suites tendent vers0quandntend vers+∞. De plus cos ?1u n? = cos(2nπ) = 1etcos?1v n? = cos?π2 + 2nπ? = 0

Par un raisonnement semblable à celui de l"exercice précédent, on en déduit que la fonctionx?→cos?1x

n"admet pas de limite en0.

Exercice 8

a) D"après le cours, la fonctionf1est prolongeable par continuité en0si et seulement si elle a une

limite finie en0. Or nous avons la majoration : Commesinxtend vers0quandxtend vers0, il en résulte quef1tend vers0en0. Donc on peut prolongerf1par continuité en0en posant :f1(0) = 0. b) Soitg:R→Rla fonction définie par g(x) = lnex+e-x2 Alorsgest dérivable surR, etg(0) = 0. La fonctionf2s"écrit f

2(x) =g(x)x

=g(x)-g(0)x On reconnaît le taux d"accroissement degentre0etx. Par conséquent,f2admet une limite finie en0, égale àg?(0). Calculons doncg?surR g ?(x) =? lnex+e-x2 =e x-e-x2 e x+e-x2 =ex-e-xe x+e-x Doncg?(0) = 0. Ainsi, en posantf2(0) = 0nous obtenons une fonctionf2continue surR. c) La fonctionf3est définie et continue surR\ {-1,1}. De plus, on calcule que : f

3(x) =11-x-21-x2=1 +x-2(1-x)(1 +x)=-1 +x(1-x)(1 +x)=-1(1 +x).

On en déduit quef3a pour limite-12

quandxtend vers1. Et donc en posantf3(1) =-12 nous obtenons une fonction continue surR\ {-1}. Par contre, en-1la fonctionf3ne peut pas

être prolongée par continuité, car elle n"admet pas une limite finie en ce point. Doncf3n"est pas

prolongeable par continuité surR.

Exercice 9

Soit f(x) =cosx1 +x2

1. Nous avons

????cosx1 +x2? car|cosx|est majoré par1et1 +x2est minoré par1. 4

2. Comme la fonctionfest majorée par1, on sait queSupx?Rf(x)est inférieur ou égal à1. D"autre

part on constate quef(0) = 1, donc1est à la fois un majorant et une valeur de la fonctionf. Par conséquent,Supx?Rf(x) = 1.

Exercice 10

Soitf:R→Rune fonction périodique de périodeT >0. On suppose quefadmet une limite finie (que

nous noterons?) quandxtend vers+∞. Nous allons montrer quefest constante. Soitx0?R, alors la suitex0+nTtend vers+∞, donc la suitef(x0+nT)converge vers?. D"autre part, on montre par récurrence que : f(x0+nT) =f(x0)pour toutn?N

c"est-à-dire que la suitef(x0+nT)est constante égale àf(x0). Doncf(x0) =?. Comme ce raisonnement

est valable pour n"importe quelle valeur dex0, on en déduit quefest constante égale à?.

Exercice 11

La fonctionf(x)-xétant bornée sur[x0,+∞[, il existe un réelMtel que

En divisant parxon trouve

?x≥x0,????f(x)x

Quand on fait tendrexvers+∞,Mx

tend vers0, donc|f(x)x -1|tend lui aussi vers0, d"où : lim x→+∞f(x)x = 1.

Exercice 12

1. On considère la fonctionfdonnée par

f(x) =? ⎷1-x2si|x|<1 ax

2+bx+csi|x| ≥1

Cette fonction est continue sur l"intervalle]-1,1[car elle est égale à la fonctionx?→⎷1-x2sur

cet intervalle. De même, elle est continue sur les intervalles]- ∞,-1[et]1,+∞[car elle est égale

à la fonctionx?→ax2+bx+csur ces intervalles. On en déduit quefest continue surRsi et seulement si elle est continue en-1et en1. Calculons les limites à droite et à gauche defen-1: lim x→-1x<-1f(x) = limx→-1x<-1ax

2+bx+c=a-b+c=f(-1)

et limx→-1x>-1f(x) = limx→-1x>-1?1-x2= 0 Doncfest continue en-1si et seulement sia-b+c= 0. Par un calcul semblable, on trouve que fest continue en1si et seulement sia+b+c= 0. Au final, pour quefsoit continue il faut que a,betcsoient solution du système?a-b+c= 0 a+b+c= 0 Finalement, on se demande si ce système admet des solutions. En additionnant les deux équation on trouve quea+c= 0, en les soustrayant on trouve queb= 0. Donc ce système admet une infinité de solutions en prenantb= 0eta=-c. 5

2. Soitn?N. D"après la formule du binôme de Newton nous avons :

(1 +x)n= 1 +nx+?n 2? x

2+···+nxn-1+xn

d"où : (1 +x)n-1x =n+?n 2? x+···+nxn-2+xn-1 Cette quantité tend versnquandxtend vers0. Donc on peut prolongerfpar continuité en0en posantf(0) =n.

Exercice 13

Soit?la limite (finie) defenx0. Prenonsε= 1dans la définition de la limite. Alors il existeδ >0tel

que, pour toutx?D:

C"est-à-dire que

Doncfest bornée dans le voisinageV= [x0-δ,x0+δ]dex0, ce qu"on voulait.

Exercice 14

1. Il suffit de montrer que tout intervalle de la forme]a,b[contient une infinité de rationnels et une

infinité d"irrationnels. Commençons par remarquer que : - la somme de deux nombres rationnels est un nombre rationnel; - la somme d"un nombre rationnel et d"un nombre irrationnel est un nombre irrationnel.

On distingue à présent deux cas :

(a) Le réelaest rationnel. Alors la suite?a+1n n≥1est une suite de nombres rationnels qui décroît

versa. L"intervalle]a,b[contient donc une infinité de valeurs de cette suite (plus précisément,

toutes les valeurs telles quensoit strictement supérieur à la partie entière de1b-a). De même,

la suite? a+⎷2 n n≥1est une suite de nombres irrationnels qui décroît versa, donc l"intervalle ]a,b[contient une infinité de valeurs de cette suite. (b) Le réelaest irrationnel. Il suffit alors de montrer l"existence d"un nombre rationnelcdans

l"intervalle]a,b[, puis d"appliquer le résultat précédent à l"intervalle]c,b[. Pour montrer l"exis-

tence dec, on procède comme suit : sib-a >1, alors il existe un nombre entier strictement compris entreaetb, donc c"est gagné. Dans le cas contraire, commeb-aest strictement positif, on peut toujours choisir un entierq≥2tel queq(b-a)>1. Mais alors il existe un nombre entier (que l"on notep) strictement compris entreqaetqb. Il en résulte que a < pq < b ce qu"on voulait.

2. En déduire que la fonctionδdéfinie surRpar

δ(x) =?1six?Q

0six??Q

est discontinue en tout point deR. 6quotesdbs_dbs31.pdfusesText_37
[PDF] torquemada victor hugo analyse

[PDF] torquemada victor hugo acte ii scène 5

[PDF] montrer que f x x

[PDF] identifier la variable sur le graphique

[PDF] représentation graphique fonction en ligne

[PDF] graphique fonction abscisse ordonnée

[PDF] sécurité physique salle informatique

[PDF] porter plainte pour insulte et menace

[PDF] qcm vecteurs seconde

[PDF] modele de rapport dagression au travail

[PDF] porter plainte pour menace verbale

[PDF] qcm maths seconde probabilités

[PDF] porter plainte pour agression verbale et menace

[PDF] porter plainte pour menace et intimidation

[PDF] consequence d'une plainte pour menace