[PDF] Corrigé du TD no 9 x?0 x2 = 0. Corrigé :





Previous PDF Next PDF



Fiche exercices (avec corrigés) - Equations différentielles

c) La solution générale est y(x) = Ce4x -. 3. 4. 2. L'équation est y/(x) + y(x)=2ex : a(x)=1et f(x)=2ex . a 



TD 1 Intégrales généralisées

16 sept. 2016 aucun problème : elles sont toutes deux O(1/x²) au V(±?). 1ère méthode : on peut les calculer séparément par calcul des primitives. > f:=1/(x^4 ...



Corrigé du TD no 9

x?0 x2 = 0. Corrigé : D'après la définition l'énoncé « lim x?0 ln(1 + x)=0 ... f(x) =.. x si x < 1 x2 si 1 ? x ? 4. 8. ? x si x > 4.



7 Lois de probabilité

Pr (X ? 4) = f (4) + f (5). = (. 5. 4)(. 1. 2). 4 (12)1 et que la donnée du problème donne Pr (B



Thème 15: Dérivée dune fonction les règles de calcul

? f (x) = 21. 5 s2 + s + 4. Modèle 1 : Les 4 premières règles de dérivation. Calculer la dérivée des fonctions ci-dessous : a) f (x) = 3x2 alors ? f (x) =.



FONCTION DERIVÉE

Ainsi pour tout x de R {0}



Développements limités

Donner un développement limité à l'ordre 2 de f(x) = 2 Applications. Exercice 4. Calculer les limites suivantes lim x?0 ex2. ?cosx x2 lim x?0.



Trigonométrie

6. cosx = ? 1?2 ? x ? (?3?. 4 +?Z)?(3?. 4 +?Z). De plus S[0



Correction (très rapide) des exercices de révision

f(x)=1/x. 2. Donne sans aucun calcul et sans utiliser la calculatrice



Fractions rationnelles

Exercice 4. Décomposer les fractions suivantes en éléments simples sur R par identification des coefficients. 1. F = X. X2?4. 2. G = X3?3X2+X?4. X?1.



AP CALCULUS AB 2014 SCORING GUIDELINES - College Board

fx x x ( ) =?+ 43 2 3 4 and the other boundary is the line y =4 In part (a) students were expected to compute the volume of the solid generated when R



SageMath - Calculus Tutorial - Limits

7 fx x() ( 5) 1=?+2 ? 8 fx x() ( 3) 4=+ +3 9 fx x() 3 6=? ? ? Domain:_____ Domain:_____ Domain:_____ Range:_____ Range:_____ Range:_____



ECE 302: Lecture 43 Cumulative Distribution Function

fX(x) = Whenx>0: fX(x) = Therefore the overall PDF is 0 fX(x) =34 12e?2x 0 3= 4 =e?2x Summary Thecumulative distribution function (CDF)of Xis FX(x)def=P[X?x] CDF must satisfy theseproperties:Non-decreasing FX(??) = 0 andFX(?) = 1 P[a?X?b] =FX(b)?FX(a) Right continuous: Solid dot on at the start



Chapter 4 - Function of Random Variables - The University of

Chapter 4 - Function of Random Variables Let X denote a random variable with known density fX(x) and distribution FX(x) Let y = g(x) denote a real-valued function of the real variable x Consider the transformation Y = g(X) (4-1) This is a transformation of the random variable X into the random variable Y Random variable

What is the limit of f(x) as x approaches 4?

Most of the time, this is fairly straightforward. For a function f (x) = 2*x, for example, the limit of f (x) as x approaches 4 would simply be 8, since 2 times 4 is 8. The notation for this, as you will surely see in a calculus book, in a calculus classroom or on a calculus test, looks like:

Which represents the inverse of the function f(x) = 4x?

Which represents the inverse of the function f (x) = 4x? 4x is shorthand for 4* x or "4 times x " The inverse is the opposite of what is happening. So the opposite of multiplication. Division is the opposite of multiplication.

How do you find the CDF of X?

X(x) = ?e??xfor x ?0, and is 0 otherwise. Find the CDF of X. Solution. F X(x) = = ( 0, x

CPP - 2013/2014 Fonctions réelles

J. Gillibert

Corrigé du TD n

o9Exercice 1

1. Montrer, à partir de la définition donnée en cours, que :

lim x→0x2= 0

Corrigé :D"après la définition, l"énoncé "limx→0x2= 0» se traduit de la façon suivante :

On souhaite montrer que cet énoncé est vrai, c"est-à-dire que, étant donné un réelε >0, il existe

de prendreδ=⎷ε, d"où le résultat.

2. Même question pour :

lim x→1? 1 +1x = 2 Corrigé :Comme précédemment, l"énoncé se traduit de la façon suivante : 1 +1x

Pour voir que cet énoncé est vrai, il faut montrer que, pour tout? >0, il existeδ >0satisfaisant

l"implication pour tout réelx?R?. Autrement dit, il faut traduire la condition|1x |x-1|. Pour cela, on procède par équivalences successives. Tout d"abord : ????1x

Pour simplifier, on peut supposer que1-ε >0, c"est-à-dire queε?]0,1[. En effet, si l"on peut

rendre|1x -1|plus petit que toute quantitéε?]0,1[, alors on peut aussi le rendre plus petit que

toute quantitéε≥1. De façon plus générale, on peut se restreindre à des valeurs suffisamment

petites deεquand on manipule la définition de limite d"une fonction en un point. Revenons à nos

moutons : si l"on suppose que1-ε >0, alors

Donc, si l"on poseδ= min(ε1+ε,ε1-ε) =ε1+ε(la plus petite des deux quantités en valeur absolue),

1

Exercice 2

1. Traduire par une formule mathématique (avec quantificateurs) l"affirmation

lim x→0ln(1 +x) = 0 Corrigé :Par définition de la limite, l"affirmation se traduit par

2. Déterminer un réelδ >0tel que

surx. Nous avons

Soitδ= min(e10-3-1,1-e-10-3). Alorsδsatisfait bien la propriété voulue. Pour ceux qui sont

curieux de connaître la valeur exacte deδ, on peut faire le raisonnement suivant : l"analyse des

variations de la fonctiont?→et+e-tmontre que celle-ci atteint son minimum en0, donc ce minimum est égal à2. En particuliere10-3+e-10-3≥2. On en déduit queδ= 1-e-10-3.

Exercice 3

a) Nous avons, pour toutx?R, la majoration suivante ????xcos(ex)x 2+ 1? 2+ 1?

D"autre part

xx

2+ 1=1x+1x

donc cette quantité tend vers0quandxtend vers+∞. On en déduit que : lim x→+∞xcos(ex)x

2+ 1= 0.

b) Commesinxest borné,x-sinxtend vers+∞quandxtend vers+∞. On en déduit que lim x→+∞ex-sinx= +∞ c) Pourx >1, la partie entière de1x est nulle. Par conséquent pour toutx >1,x?1x = 0.

Donc la limite cherchée vaut0.

d) Nous avons : sin(xlnx)x =sin(xlnx)xlnxlnx Six→0, alorsxlnx→0. Donc par composition des limites on a : lim x→0sin(xlnx)xlnx= limy→0sinyy = 1

On en déduit que :

lim x→0sin(xlnx)x 2

Exercice 4

Soitf:R→Rla fonction définie par

f(x) =? ?xsix <1 x

8⎷xsix >4

1. L"allure du graphe defa été vue en TD!

2. On note d"abord quefest continue sur l"intervalle]-∞,1[, car elle est égale sur cet intervalle à la

fonctionx?→x. De même, la fonctionfest continue sur les intervalles]1,4[et]4,+∞[car elle est

égale à des fonctions continues sur chacun de ces intervalles. Il reste à étudier la continuité defen

1et en4. En1nous avons :

limx→1x<1f(x) = limx→1x<1x= 1 et limx→1x>1f(x) = limx→1x>1x 2= 1

donc les limites à droite et à gauche defen1sont égales àf(1), ce qui montre quefest continue

en1. On montre de même quefest continue en4. On en conclut quefest continue surR.

Exercice 5

1. La fonctionf:x?→x?x?n"est pas continue. En effet,f(x) = 0pour toutx?[0,1[, d"où :

lim x→1x<1f(x) = 0 et d"autre partf(1) = 1, donc la limite à gauche defen1n"est pas égale àf(1), ce qui montre quefn"est pas continue en1.

2. Nous allons montrer que la fonctiong:x?→ ?x?sin(πx)est continue surR. On note d"abord queg

est continue sur chacun des intervalles de la forme]n,n+ 1[avecn?Z. Il reste à montrer queg est continue en chaque entier relatif. Soitn?Z, alors lim x→nxng(x) =n·0 = 0

etg(n) =nsin(nπ) = 0. Doncga des limites à droite et à gauche ennqui sont égales àg(n), ce

qui montre quegest continue enn.

Exercice 6

On considère la fonctionfdéfinie surRparf(x) =xsinx.

1. Pour toutn?N, on posexn=π2

+ 2nπ. Alors la suite(xn)tend vers+∞, etsin(xn) = 1pour toutn, donc f(xn) =xnsin(xn) =xn doncf(xn)tend vers+∞.

2. Pour toutn?N, on poseyn= 2nπ. Alors la suite(yn)tend vers+∞, etsin(yn) = 0pour toutn,

donc f(yn) =ynsin(yn) = 0 doncf(yn)tend vers0.

3. Si la fonctionfavait une limite en+∞, alors (d"après le critère séquentiel) les suitesf(xn)etf(yn)

tendraient toutes les deux vers cette limite. Orf(xn)etf(yn)n"ont pas la même limite, doncfn"a pas de limite en+∞. 3

Exercice 7

On définit deux suites(un)n≥1et(vn)n≥1en posant : u n=12nπetvn=1π 2 + 2nπ. Ces deux suites tendent vers0quandntend vers+∞. De plus cos ?1u n? = cos(2nπ) = 1etcos?1v n? = cos?π2 + 2nπ? = 0

Par un raisonnement semblable à celui de l"exercice précédent, on en déduit que la fonctionx?→cos?1x

n"admet pas de limite en0.

Exercice 8

a) D"après le cours, la fonctionf1est prolongeable par continuité en0si et seulement si elle a une

limite finie en0. Or nous avons la majoration : Commesinxtend vers0quandxtend vers0, il en résulte quef1tend vers0en0. Donc on peut prolongerf1par continuité en0en posant :f1(0) = 0. b) Soitg:R→Rla fonction définie par g(x) = lnex+e-x2 Alorsgest dérivable surR, etg(0) = 0. La fonctionf2s"écrit f

2(x) =g(x)x

=g(x)-g(0)x On reconnaît le taux d"accroissement degentre0etx. Par conséquent,f2admet une limite finie en0, égale àg?(0). Calculons doncg?surR g ?(x) =? lnex+e-x2 =e x-e-x2 e x+e-x2 =ex-e-xe x+e-x Doncg?(0) = 0. Ainsi, en posantf2(0) = 0nous obtenons une fonctionf2continue surR. c) La fonctionf3est définie et continue surR\ {-1,1}. De plus, on calcule que : f

3(x) =11-x-21-x2=1 +x-2(1-x)(1 +x)=-1 +x(1-x)(1 +x)=-1(1 +x).

On en déduit quef3a pour limite-12

quandxtend vers1. Et donc en posantf3(1) =-12 nous obtenons une fonction continue surR\ {-1}. Par contre, en-1la fonctionf3ne peut pas

être prolongée par continuité, car elle n"admet pas une limite finie en ce point. Doncf3n"est pas

prolongeable par continuité surR.

Exercice 9

Soit f(x) =cosx1 +x2

1. Nous avons

????cosx1 +x2? car|cosx|est majoré par1et1 +x2est minoré par1. 4

2. Comme la fonctionfest majorée par1, on sait queSupx?Rf(x)est inférieur ou égal à1. D"autre

part on constate quef(0) = 1, donc1est à la fois un majorant et une valeur de la fonctionf. Par conséquent,Supx?Rf(x) = 1.

Exercice 10

Soitf:R→Rune fonction périodique de périodeT >0. On suppose quefadmet une limite finie (que

nous noterons?) quandxtend vers+∞. Nous allons montrer quefest constante. Soitx0?R, alors la suitex0+nTtend vers+∞, donc la suitef(x0+nT)converge vers?. D"autre part, on montre par récurrence que : f(x0+nT) =f(x0)pour toutn?N

c"est-à-dire que la suitef(x0+nT)est constante égale àf(x0). Doncf(x0) =?. Comme ce raisonnement

est valable pour n"importe quelle valeur dex0, on en déduit quefest constante égale à?.

Exercice 11

La fonctionf(x)-xétant bornée sur[x0,+∞[, il existe un réelMtel que

En divisant parxon trouve

?x≥x0,????f(x)x

Quand on fait tendrexvers+∞,Mx

tend vers0, donc|f(x)x -1|tend lui aussi vers0, d"où : lim x→+∞f(x)x = 1.

Exercice 12

1. On considère la fonctionfdonnée par

f(x) =? ⎷1-x2si|x|<1 ax

2+bx+csi|x| ≥1

Cette fonction est continue sur l"intervalle]-1,1[car elle est égale à la fonctionx?→⎷1-x2sur

cet intervalle. De même, elle est continue sur les intervalles]- ∞,-1[et]1,+∞[car elle est égale

à la fonctionx?→ax2+bx+csur ces intervalles. On en déduit quefest continue surRsi et seulement si elle est continue en-1et en1. Calculons les limites à droite et à gauche defen-1: lim x→-1x<-1f(x) = limx→-1x<-1ax

2+bx+c=a-b+c=f(-1)

et limx→-1x>-1f(x) = limx→-1x>-1?1-x2= 0 Doncfest continue en-1si et seulement sia-b+c= 0. Par un calcul semblable, on trouve que fest continue en1si et seulement sia+b+c= 0. Au final, pour quefsoit continue il faut que a,betcsoient solution du système?a-b+c= 0 a+b+c= 0 Finalement, on se demande si ce système admet des solutions. En additionnant les deux équation on trouve quea+c= 0, en les soustrayant on trouve queb= 0. Donc ce système admet une infinité de solutions en prenantb= 0eta=-c. 5

2. Soitn?N. D"après la formule du binôme de Newton nous avons :

(1 +x)n= 1 +nx+?n 2? x

2+···+nxn-1+xn

d"où : (1 +x)n-1x =n+?n 2? x+···+nxn-2+xn-1 Cette quantité tend versnquandxtend vers0. Donc on peut prolongerfpar continuité en0en posantf(0) =n.

Exercice 13

Soit?la limite (finie) defenx0. Prenonsε= 1dans la définition de la limite. Alors il existeδ >0tel

que, pour toutx?D:

C"est-à-dire que

Doncfest bornée dans le voisinageV= [x0-δ,x0+δ]dex0, ce qu"on voulait.

Exercice 14

1. Il suffit de montrer que tout intervalle de la forme]a,b[contient une infinité de rationnels et une

infinité d"irrationnels. Commençons par remarquer que : - la somme de deux nombres rationnels est un nombre rationnel; - la somme d"un nombre rationnel et d"un nombre irrationnel est un nombre irrationnel.

On distingue à présent deux cas :

(a) Le réelaest rationnel. Alors la suite?a+1n n≥1est une suite de nombres rationnels qui décroît

versa. L"intervalle]a,b[contient donc une infinité de valeurs de cette suite (plus précisément,

toutes les valeurs telles quensoit strictement supérieur à la partie entière de1b-a). De même,

la suite? a+⎷2 n n≥1est une suite de nombres irrationnels qui décroît versa, donc l"intervalle ]a,b[contient une infinité de valeurs de cette suite. (b) Le réelaest irrationnel. Il suffit alors de montrer l"existence d"un nombre rationnelcdans

l"intervalle]a,b[, puis d"appliquer le résultat précédent à l"intervalle]c,b[. Pour montrer l"exis-

tence dec, on procède comme suit : sib-a >1, alors il existe un nombre entier strictement compris entreaetb, donc c"est gagné. Dans le cas contraire, commeb-aest strictement positif, on peut toujours choisir un entierq≥2tel queq(b-a)>1. Mais alors il existe un nombre entier (que l"on notep) strictement compris entreqaetqb. Il en résulte que a < pq < b ce qu"on voulait.

2. En déduire que la fonctionδdéfinie surRpar

δ(x) =?1six?Q

0six??Q

est discontinue en tout point deR. 6quotesdbs_dbs26.pdfusesText_32