[PDF] Intégrales convergentes 9 mai 2012 ?t>





Previous PDF Next PDF



1 Intégrales généralisées

Exercice 1. Montrer que l'intégrale de f : t ?? exp(?t) est convergente sur [0 +?[ et. ? +?. 0 exp(?t)dt = 1. Correction : Pour tout x > 0



Intégrales convergentes

9 mai 2012 ?t>A t?e?t ? e?t/2 . Or l'intégrale ? +?. 1 e?t/2 dt converge. En effet :.



Intégrale de Gauss

Intégrale de Gauss La fonction (t x) ??. ? 1. 0 e?(t2+1)x2 ... e?(tx)2 dt ce qui



Formules de Taylor. Applications. 1 Formule de Taylor avec reste

La formule de Taylor avec reste intégral `a l'ordre n s'écrit alors : exp(x)=1+ n. ? k=1 xk k! + xn+1 n! ? 1. 0(1 ? t)n exp(tx) dt.



Correction de linterrogation

?t/2 ? e?t/2. Or l'intégrale ?. ?. A e?t/2dt converge d'après le théorème d'intégrabilité des fonctions exponentielles. Comme ?t ? 0



Résumé sur les Intégrales Impropres & exercices supplémentaires

f(t)dt est divergente. Exemples. (a). On a. / x. 0 e?tdt = 1 ? e?x. Comme lim x?+? e?x = 0 l'intégrale. / +?. 0 e?tdt est convergente et vaut.



EQUATIONS DIFFERENTIELLES I Définition et notation

La solution générale de cette équation sur I est : y0 = k×e-A(t) où A(t) est une primitive de a(t) sur I et 



Python MP PC

TSI Oral



Développement asymptotique de lintégrale de sin(t)/t

t dt. Yves Coudene 16/10/03. L'intégrale ? N. 0 sin t t L'intégrale ? N. 0 e?tx sint dt se calcule explicitement `a l'aide des complexes :.



Etude de la fonction Gamma ?

e?ttx?1 et pour tout x ? R fx : R?+. ? R t. ?? f(x



Asymptotic Expansion of Integrals - University of Utah

Apr 16 2017 · exp t x? t dt: One can show that asymptotically the solution satis es ypxq c ? 3 3? 4xexp 3 x 2 2{3 as xÝÑ8: 1 Asymptotic Notation We begin by de ning asymptotic notations and asymptotic expansion These are useful in describing the limiting behaviour of a function when the argument gets closer to a particular complex number typically 0 or



List of Integrals Containing exp(x) - Math info

Integrals with Trigonometric Functions Z sinaxdx= 1 a cosax (63) Z sin2 axdx= x 2 sin2ax 4a (64) Z sinn axdx= 1 a cosax 2F 1 1 2; 1 n 2; 3 2;cos2 ax (65) Z sin3 axdx= 3cosax 4a + cos3ax 12a (66) Z cosaxdx=



Table of Basic Integrals Basic Forms

e t2dt (60) Z xex dx= (x 1)ex (61) Z xe axdx= x a 1 a2 e (62) Z x2ex dx= x2 2x+ 2 ex (63) Z x2eax dx= x2 a ax 2x a2 + 2 a3 e (64) Z x3ex dx= x3 3x2 + 6x 6 ex (65) Z



List of integrals of exponential functions - Informa?ní systém

List of integrals of exponential functions 3 ( is the modified Bessel function of the first kind) References • Wolfram Mathematica Online Integrator (http:/

What are the different types of integrals?

Integrals Containing sin Integrals Containing tan Integrals Continaing sec Integrals Continaing csc Integrals Containing cot Inverse Trigonometric Functions Hyperbolic Functions

How do you evaluate a definite integral?

Evaluate the definite integral using substitution: ?2 1 1 x3e4x ? 2dx. Integrating functions of the form f(x) = 1 x or f(x) = x ? 1 result in the absolute value of the natural log function, as shown in the following rule. The following formula can be used to evaluate integrals in which the power is ? 1 and the power rule does not work.

What are double integrals?

Double Integrals: Surface Area Triple Integrals Gradient of a Scalar Function Line Integral of a Vector Field Line Integral of a Scalar Field Green's Theorem Divergence of a Vector Field

How do you integrate an exponential function?

Exponential functions can be integrated using the following formulas. Find the antiderivative of the exponential function e ? x. Use substitution, setting u = ? x, and then du = ? 1dx. Multiply the du equation by ? 1, so you now have ? du = dx. Then, Find the antiderivative of the function using substitution: x2e ? 2x3.

Université Joseph Fourier, Grenoble Maths en Ligne

Intégrales convergentes

La plupart des intégrales que vous rencontrerez ne sont pas des aires de domaines bornés du plan. Nous allons apprendre ici à calculer les intégrales de domaines non bornés, soit parce que l"intervalle d"intégration est infini, soit parce que la fonction à intégrer tend vers l"infini aux bornes de l"intervalle. Pour assimiler ce chapitre, vous avez juste besoin d"une petite révision des techniques de calcul des primitives, et d"une bonne compréhension de la notion de limite.

Table des matières

1 Cours 1

1.1 Définitions et propriétés . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Fonctions positives, intervalle non borné . . . . . . . . . . . . . . . . . 5

1.3 Fonctions positives, intervalle borné . . . . . . . . . . . . . . . . . . . . 8

1.4 Fonctions oscillantes, intervalle non borné . . . . . . . . . . . . . . . . 11

1.5 Fonctions oscillantes, intervalle borné . . . . . . . . . . . . . . . . . . . 14

1.6 Plan d"étude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.7 Exemples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Entraînement 19

2.1 Vrai ou faux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Exercices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 QCM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Corrigé du devoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Compléments 37

3.1 La pédagogie des sourds-muets . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Un tour de passe-passe d"Euler . . . . . . . . . . . . . . . . . . . . . . 37

3.3 La courbe de Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9 mai 2012

Maths en LigneIntégrales convergentesUJF Grenoble1 Cours

1.1 Définitions et propriétés

Notre but dans ce chapitre est de calculer des intégrales sur des intervalles non bornés (allant jusqu"à+∞ou-∞), ou bien des intégrales sur un domaine borné, de

fonctions ayant une limite infinie en un point de l"intervalle d"intégration. Si on se réfère

à l"interprétation intuitive d"une intégrale comme la surface d"un domaine dans le plan, dans les deux cas nous cherchons à calculer des surfaces de domainesnon bornés. Considérons par exemple la fonctionfqui àt?R?associef(t) =|t|-3/2sin(t):

son graphe est représenté sur la figure 1. Comment donner un sens à l"intégrale def-20-16-12-8-4048121620-1.5

-1.0 -0.5 0.0 0.5 1.0 1.5 y=|t|^(-3/2) sin(t) tyFigure1 - Graphe de la fonctiont?→ |t|-3/2sin(t). surR? Nous souhaitons une définition qui respecte les propriétés de base que sont la relation de Chasles, la linéarité et la monotonie. On commence d"abord par identifier lespoints incertains, soit±∞d"une part, et d"autre part le ou les points au voisinage desquels la fonction n"est pas bornée (t= 0 dans notre exemple). On découpe ensuite l"intervalle d"intégration en autant d"inter- valles qui faut pour que chacun d"eux ne contienne qu"un seul point incertain, placé à l"une des deux bornes. La relation de Chasles impose que l"intégrale sur l"intervalle complet soit la somme des intégrales sur les intervalles du découpage. Dans l"exemple de la fonctionf(t) =|t|-3/2sin(t)ci-dessus, il faut découper en 4 sous-intervalles : 2 pour isoler-∞et+∞, et 2 autres pour le point incertain0. On pourra écrire par exemple : -∞f(t)dt=? -1 -∞f(t)dt+? 0 -1f(t)dt+? 1

0f(t)dt+?

1f(t)dt .

Le seul but est d"isoler les difficultés : les choix de-1et1comme points de découpage sont arbitraires (par exemple-3et10auraient convenu tout aussi bien). Par ce découpage, on se ramène à des intégrales de 4 types. 1 Maths en LigneIntégrales convergentesUJF Grenoble1. intégrale sur]- ∞,a],

2. intégrale sur[a,+∞[,

3. intégrale sur]a,b], fonction non bornée ena,

4. intégrale sur[a,b[, fonction non bornée enb,

Le changement de variablet?→ -tpermet de réduire ces 4 cas à 2 seulement. En effet : a -∞f(t)dt=? -af(-u)du , b af(t)dt=? -a -bf(-u)du . Nous devons donc définir l"intégrale dans deux cas distincts.

Définition 1.

1. Soitfune fonction continue sur[a,+∞[. On dit que l"intégrale?+∞

af(t)dt convergesi la limite quandxtend vers+∞de la primitive?x af(t)dtexiste.

Si c"est le cas, on pose :

af(t)dt= limx→+∞? x af(t)dt .(1) Dans le cas contraire, on dit que l"intégralediverge.

2. Soitfune fonction continue sur]a,b]. On dit que l"intégrale?b

af(t)dtconverge si la limite à droite quandxtend versade?b xf(t)dtexiste. Si c"est le cas, on pose :?b af(t)dt= limx→a+? b xf(t)dt .(2) Dans le cas contraire, on dit que l"intégralediverge.

Observons que la deuxième définition est cohérente avec les propriétés de l"intégrale

d"une fonction continue : si la fonctionfest continue sur[a,b]tout entier, alors?b xf(t)dt est une fonction dexcontinue ena, et (2) est vérifié.

Dans?+∞

af(t)dt, la borne de gauche de l"intervalle d"intégration n"a pas d"influence sur le comportement de l"intégrale. Supposonsfcontinue sur[a,+∞[et choisissons un réela?> a. Par la relation de Chasles, x af(t)dt=? a? a f(t)dt+? x a ?f(t)dt Comme ?a? af(t)dtne dépend pas dex, la limite de?x af(t)dtexiste si et seulement si celle de?x a ?f(t)dtexiste aussi. La convergence d"une intégrale ne dépend donc pas du comportement de la fonction sur des intervalles bornés, mais seulement de son comportement au voisinage de+∞. 2

Maths en LigneIntégrales convergentesUJF GrenobleSifn"est pas bornée au voisinage dea, la convergence de?b

af(t)dtne dépend pas deb, pour la même raison : elle ne dépend que du comportement defau voisinage de a.

Le résultat suivant est une conséquence immédiate de la linéarité des intégrales et

des limites.

Proposition 1.

1. Soientfetgdeux fonctions continues sur[a,+∞[, etα,βdeux réels. Si les inté-

grales?+∞ af(t)dtet?+∞ ag(t)dtconvergent, alors?+∞ aαf(t)+βg(t)dtconverge et aαf(t) +βg(t)dt=α? af(t)dt+β? ag(t)dt .

2. Soientfetgdeux fonctions continues sur]a,b], etα,βdeux réels. Si les intégrales?b

af(t)dtet?b ag(t)dtconvergent, alors?b aαf(t) +βg(t)dtconverge et b aαf(t) +βg(t)dt=α? b af(t)dt+β? b ag(t)dt . Quand on peut calculer une primitive de la fonction à intégrer, l"étude de la conver- gence se ramène à un calcul de limite. Voici plusieurs exemples.

L"intégrale

011 +t2dtconverge.

En effet,

x

011 +t2dt=?

arctan(t)? x

0= arctan(x)etlimx→+∞arctan(x) =π2

On pourra écrire :

011 +t2dt=?

arctan(t)?

0=π2

à condition de se souvenir que

arctan(t)?

0désigne une limite en+∞.

Par contre, l"intégrale

011 +tdtdiverge.

En effet,

x

011 +tdt=?

ln(1 +t)? x

0= ln(1 +x)etlimx→+∞ln(1 +x) = +∞.

L"intégrale

?1

0ln(t)dtconverge.

3 Maths en LigneIntégrales convergentesUJF GrenobleEn effet, 1 xln(t)dt=? tln(t)-t? 1 x=x-xln(x)-1etlimx→0+(x-xln(x)-1) =-1

On pourra écrire :

?1

0ln(t)dt=?

tln(t)-t? 1 0=-1.

Par contre, l"intégrale

?1 01t dtdiverge.

En effet,

?1 x1t dt=? ln(t)? 1

x=-ln(x)etlimx→0-ln(x) = +∞.(a)(b)(c)(d)Figure2 - Différents types d"intégrales : (a) intervalle non borné, fonction de signe

constant; (b) intervalle borné, fonction de signe constant; (c) intervalle non borné, fonction de signe non constant; (d) intervalle borné, fonction de signe non constant. Quand on ne sait pas calculer une primitive, on a recours à deux types de méthodes, selon que la fonction est ou non de signe constant au voisinage du point incertain. Il y a donc 4 cas distincts, selon le type du point incertain, et le signe, constant ou non, de

la fonction à intégrer. Ces 4 types sont schématisés dans la figure 2 et leur étude fait

l"objet des sections suivantes. 4 Maths en LigneIntégrales convergentesUJF Grenoble1.2 Fonctions positives, intervalle non borné

Nous considérons ici

af(t)dt, oùfest de signe constant au voisinage de+∞.

Quitte à réduire l"intervalle d"intégration, et à changer éventuellement le signe defs"il

est négatif, nous pouvons supposer que la fonction est positive ou nulle sur l"intervalle

d"intégration[a,+∞[(figure 3). Rappelons que par définition,(a)Figure3 - Intégrale d"une fonction positive sur un intervalle non borné.

af(t)dt= limx→+∞? x af(t)dt . Observons que si la fonctionfest positive, alors la primitive?x af(t)dtest une fonction croissante dex(car sa dérivée estf(x)). Quandxtend vers l"infini, soit?x af(t)dtest bornée, et l"intégrale?+∞ af(t)dtconverge, soit?x af(t)dttend vers+∞. Si on ne peut pas (ou si on ne veut pas) calculer une primitive def, on étudie laquotesdbs_dbs22.pdfusesText_28
[PDF] integrale sin(t)/t^2

[PDF] integrale sin(t)/t

[PDF] procédés théatraux

[PDF] tendinopathie genou traitement

[PDF] tendinite demi membraneux

[PDF] comment soigner une fabella

[PDF] fabella douloureuse

[PDF] tendinite poplité traitement

[PDF] mecanique de fluide resume

[PDF] mécanique des fluides bernoulli exercices corrigés

[PDF] fiche résumé mécanique des fluides

[PDF] mécanique des fluides cours pdf

[PDF] question ? choix multiple culture générale

[PDF] question ? choix multiple definition

[PDF] choix multiple orthographe